qca/plugins/qca-ossl/qca-ossl.cpp
Albert Astals Cid dce16514fe Enable a clazy CI
Starting with only missing-qobject-macro check enabled
2020-01-29 14:31:55 +01:00

7671 lines
172 KiB
C++

/*
* Copyright (C) 2004-2007 Justin Karneges <justin@affinix.com>
* Copyright (C) 2004-2006 Brad Hards <bradh@frogmouth.net>
* Copyright (C) 2013-2016 Ivan Romanov <drizt@land.ru>
* Copyright (C) 2017 Fabian Vogt <fabian@ritter-vogt.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*
*/
#include <QtCrypto>
#include <qcaprovider.h>
#include <QDebug>
#include <QElapsedTimer>
#include <QScopedPointer>
#include <QtPlugin>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <openssl/rand.h>
#include <openssl/pem.h>
#include <openssl/err.h>
#include <openssl/x509v3.h>
#include <openssl/pkcs12.h>
#include <openssl/ssl.h>
#include "ossl110-compat.h"
#ifndef OSSL_097
// comment this out if you'd rather use openssl 0.9.6
#define OSSL_097
#endif
#if defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10000000L
// OpenSSL 1.0.0 makes a few changes that aren't very C++ friendly...
// Among other things, CHECKED_PTR_OF returns a void*, but is used in
// contexts requiring STACK pointers.
#undef CHECKED_PTR_OF
#define CHECKED_PTR_OF(type, p) \
((_STACK*) (1 ? p : (type*)0))
#endif
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
#define OSSL_110
#endif
// OpenSSL 1.1.0 compatibility macros
#ifdef OSSL_110
#define M_ASN1_IA5STRING_new() ASN1_IA5STRING_new()
#define RSA_F_RSA_EAY_PRIVATE_DECRYPT RSA_F_RSA_OSSL_PRIVATE_DECRYPT
#endif
#ifdef OSSL_110
#include <openssl/kdf.h>
#endif
using namespace QCA;
namespace opensslQCAPlugin {
//----------------------------------------------------------------------------
// Util
//----------------------------------------------------------------------------
static SecureArray bio2buf(BIO *b)
{
SecureArray buf;
while(1) {
SecureArray block(1024);
int ret = BIO_read(b, block.data(), block.size());
if(ret <= 0)
break;
block.resize(ret);
buf.append(block);
if(ret != 1024)
break;
}
BIO_free(b);
return buf;
}
static QByteArray bio2ba(BIO *b)
{
QByteArray buf;
while(1) {
QByteArray block(1024, 0);
int ret = BIO_read(b, block.data(), block.size());
if(ret <= 0)
break;
block.resize(ret);
buf.append(block);
if(ret != 1024)
break;
}
BIO_free(b);
return buf;
}
static BigInteger bn2bi(const BIGNUM *n)
{
SecureArray buf(BN_num_bytes(n) + 1);
buf[0] = 0; // positive
BN_bn2bin(n, (unsigned char *)buf.data() + 1);
return BigInteger(buf);
}
static BIGNUM *bi2bn(const BigInteger &n)
{
SecureArray buf = n.toArray();
return BN_bin2bn((const unsigned char *)buf.data(), buf.size(), NULL);
}
// take lowest bytes of BIGNUM to fit
// pad with high byte zeroes to fit
static SecureArray bn2fixedbuf(const BIGNUM *n, int size)
{
SecureArray buf(BN_num_bytes(n));
BN_bn2bin(n, (unsigned char *)buf.data());
SecureArray out(size);
memset(out.data(), 0, size);
int len = qMin(size, buf.size());
memcpy(out.data() + (size - len), buf.data(), len);
return out;
}
static SecureArray dsasig_der_to_raw(const SecureArray &in)
{
DSA_SIG *sig = DSA_SIG_new();
const unsigned char *inp = (const unsigned char *)in.data();
d2i_DSA_SIG(&sig, &inp, in.size());
const BIGNUM *bnr, *bns;
DSA_SIG_get0(sig, &bnr, &bns);
SecureArray part_r = bn2fixedbuf(bnr, 20);
SecureArray part_s = bn2fixedbuf(bns, 20);
SecureArray result;
result.append(part_r);
result.append(part_s);
DSA_SIG_free(sig);
return result;
}
static SecureArray dsasig_raw_to_der(const SecureArray &in)
{
if(in.size() != 40)
return SecureArray();
DSA_SIG *sig = DSA_SIG_new();
SecureArray part_r(20); BIGNUM *bnr;
SecureArray part_s(20); BIGNUM *bns;
memcpy(part_r.data(), in.data(), 20);
memcpy(part_s.data(), in.data() + 20, 20);
bnr = BN_bin2bn((const unsigned char *)part_r.data(), part_r.size(), NULL);
bns = BN_bin2bn((const unsigned char *)part_s.data(), part_s.size(), NULL);
if(DSA_SIG_set0(sig, bnr, bns) == 0)
return SecureArray();
// Not documented what happens in the failure case, free bnr and bns?
int len = i2d_DSA_SIG(sig, NULL);
SecureArray result(len);
unsigned char *p = (unsigned char *)result.data();
i2d_DSA_SIG(sig, &p);
DSA_SIG_free(sig);
return result;
}
static int passphrase_cb(char *buf, int size, int rwflag, void *u)
{
Q_UNUSED(buf);
Q_UNUSED(size);
Q_UNUSED(rwflag);
Q_UNUSED(u);
return 0;
}
/*static bool is_basic_constraint(const ConstraintType &t)
{
bool basic = false;
switch(t.known())
{
case DigitalSignature:
case NonRepudiation:
case KeyEncipherment:
case DataEncipherment:
case KeyAgreement:
case KeyCertificateSign:
case CRLSign:
case EncipherOnly:
case DecipherOnly:
basic = true;
break;
case ServerAuth:
case ClientAuth:
case CodeSigning:
case EmailProtection:
case IPSecEndSystem:
case IPSecTunnel:
case IPSecUser:
case TimeStamping:
case OCSPSigning:
break;
}
return basic;
}
static Constraints basic_only(const Constraints &list)
{
Constraints out;
for(int n = 0; n < list.count(); ++n)
{
if(is_basic_constraint(list[n]))
out += list[n];
}
return out;
}
static Constraints ext_only(const Constraints &list)
{
Constraints out;
for(int n = 0; n < list.count(); ++n)
{
if(!is_basic_constraint(list[n]))
out += list[n];
}
return out;
}*/
// logic from Botan
/*static Constraints find_constraints(const PKeyContext &key, const Constraints &orig)
{
Constraints constraints;
if(key.key()->type() == PKey::RSA)
constraints += KeyEncipherment;
if(key.key()->type() == PKey::DH)
constraints += KeyAgreement;
if(key.key()->type() == PKey::RSA || key.key()->type() == PKey::DSA)
{
constraints += DigitalSignature;
constraints += NonRepudiation;
}
Constraints limits = basic_only(orig);
Constraints the_rest = ext_only(orig);
if(!limits.isEmpty())
{
Constraints reduced;
for(int n = 0; n < constraints.count(); ++n)
{
if(limits.contains(constraints[n]))
reduced += constraints[n];
}
constraints = reduced;
}
constraints += the_rest;
return constraints;
}*/
static void try_add_name_item(X509_NAME **name, int nid, const QString &val)
{
if(val.isEmpty())
return;
QByteArray buf = val.toLatin1();
if(!(*name))
*name = X509_NAME_new();
X509_NAME_add_entry_by_NID(*name, nid, MBSTRING_ASC, (unsigned char *)buf.data(), buf.size(), -1, 0);
}
static X509_NAME *new_cert_name(const CertificateInfo &info)
{
X509_NAME *name = 0;
// FIXME support multiple items of each type
try_add_name_item(&name, NID_commonName, info.value(CommonName));
try_add_name_item(&name, NID_countryName, info.value(Country));
try_add_name_item(&name, NID_localityName, info.value(Locality));
try_add_name_item(&name, NID_stateOrProvinceName, info.value(State));
try_add_name_item(&name, NID_organizationName, info.value(Organization));
try_add_name_item(&name, NID_organizationalUnitName, info.value(OrganizationalUnit));
return name;
}
static void try_get_name_item(X509_NAME *name, int nid, const CertificateInfoType &t, CertificateInfo *info)
{
int loc;
loc = -1;
while ((loc = X509_NAME_get_index_by_NID(name, nid, loc)) != -1) {
X509_NAME_ENTRY *ne = X509_NAME_get_entry(name, loc);
ASN1_STRING *data = X509_NAME_ENTRY_get_data(ne);
QByteArray cs((const char *)data->data, data->length);
info->insert(t, QString::fromLatin1(cs));
}
}
static void try_get_name_item_by_oid(X509_NAME *name, const QString &oidText, const CertificateInfoType &t, CertificateInfo *info)
{
ASN1_OBJECT *oid = OBJ_txt2obj( oidText.toLatin1().data(), 1); // 1 = only accept dotted input
if(!oid)
return;
int loc;
loc = -1;
while ((loc = X509_NAME_get_index_by_OBJ(name, oid, loc)) != -1) {
X509_NAME_ENTRY *ne = X509_NAME_get_entry(name, loc);
ASN1_STRING *data = X509_NAME_ENTRY_get_data(ne);
QByteArray cs((const char *)data->data, data->length);
info->insert(t, QString::fromLatin1(cs));
qDebug() << "oid: " << oidText << ", result: " << cs;
}
ASN1_OBJECT_free(oid);
}
static CertificateInfo get_cert_name(X509_NAME *name)
{
CertificateInfo info;
try_get_name_item(name, NID_commonName, CommonName, &info);
try_get_name_item(name, NID_countryName, Country, &info);
try_get_name_item_by_oid(name, QString("1.3.6.1.4.1.311.60.2.1.3"), IncorporationCountry, &info);
try_get_name_item(name, NID_localityName, Locality, &info);
try_get_name_item_by_oid(name, QString("1.3.6.1.4.1.311.60.2.1.1"), IncorporationLocality, &info);
try_get_name_item(name, NID_stateOrProvinceName, State, &info);
try_get_name_item_by_oid(name, QString("1.3.6.1.4.1.311.60.2.1.2"), IncorporationState, &info);
try_get_name_item(name, NID_organizationName, Organization, &info);
try_get_name_item(name, NID_organizationalUnitName, OrganizationalUnit, &info);
// legacy email
{
CertificateInfo p9_info;
try_get_name_item(name, NID_pkcs9_emailAddress, EmailLegacy, &p9_info);
QList<QString> emails = info.values(Email);
QMapIterator<CertificateInfoType,QString> it(p9_info);
while(it.hasNext())
{
it.next();
if(!emails.contains(it.value()))
info.insert(Email, it.value());
}
}
return info;
}
static X509_EXTENSION *new_subject_key_id(X509 *cert)
{
X509V3_CTX ctx;
X509V3_set_ctx_nodb(&ctx);
X509V3_set_ctx(&ctx, NULL, cert, NULL, NULL, 0);
X509_EXTENSION *ex = X509V3_EXT_conf_nid(NULL, &ctx, NID_subject_key_identifier, (char *)"hash");
return ex;
}
static X509_EXTENSION *new_basic_constraints(bool ca, int pathlen)
{
BASIC_CONSTRAINTS *bs = BASIC_CONSTRAINTS_new();
bs->ca = (ca ? 1: 0);
bs->pathlen = ASN1_INTEGER_new();
ASN1_INTEGER_set(bs->pathlen, pathlen);
X509_EXTENSION *ex = X509V3_EXT_i2d(NID_basic_constraints, 1, bs); // 1 = critical
BASIC_CONSTRAINTS_free(bs);
return ex;
}
static void get_basic_constraints(X509_EXTENSION *ex, bool *ca, int *pathlen)
{
BASIC_CONSTRAINTS *bs = (BASIC_CONSTRAINTS *)X509V3_EXT_d2i(ex);
*ca = (bs->ca ? true: false);
if(bs->pathlen)
*pathlen = ASN1_INTEGER_get(bs->pathlen);
else
*pathlen = 0;
BASIC_CONSTRAINTS_free(bs);
}
enum ConstraintBit
{
Bit_DigitalSignature = 0,
Bit_NonRepudiation = 1,
Bit_KeyEncipherment = 2,
Bit_DataEncipherment = 3,
Bit_KeyAgreement = 4,
Bit_KeyCertificateSign = 5,
Bit_CRLSign = 6,
Bit_EncipherOnly = 7,
Bit_DecipherOnly = 8
};
static QByteArray ipaddress_string_to_bytes(const QString &)
{
return QByteArray(4, 0);
}
static GENERAL_NAME *new_general_name(const CertificateInfoType &t, const QString &val)
{
GENERAL_NAME *name = 0;
switch(t.known())
{
case Email:
{
QByteArray buf = val.toLatin1();
ASN1_IA5STRING *str = M_ASN1_IA5STRING_new();
ASN1_STRING_set((ASN1_STRING *)str, (unsigned char *)buf.data(), buf.size());
name = GENERAL_NAME_new();
name->type = GEN_EMAIL;
name->d.rfc822Name = str;
break;
}
case URI:
{
QByteArray buf = val.toLatin1();
ASN1_IA5STRING *str = M_ASN1_IA5STRING_new();
ASN1_STRING_set((ASN1_STRING *)str, (unsigned char *)buf.data(), buf.size());
name = GENERAL_NAME_new();
name->type = GEN_URI;
name->d.uniformResourceIdentifier = str;
break;
}
case DNS:
{
QByteArray buf = val.toLatin1();
ASN1_IA5STRING *str = M_ASN1_IA5STRING_new();
ASN1_STRING_set((ASN1_STRING *)str, (unsigned char *)buf.data(), buf.size());
name = GENERAL_NAME_new();
name->type = GEN_DNS;
name->d.dNSName = str;
break;
}
case IPAddress:
{
QByteArray buf = ipaddress_string_to_bytes(val);
ASN1_OCTET_STRING *str = ASN1_OCTET_STRING_new();
ASN1_STRING_set((ASN1_STRING *)str, (unsigned char *)buf.data(), buf.size());
name = GENERAL_NAME_new();
name->type = GEN_IPADD;
name->d.iPAddress = str;
break;
}
case XMPP:
{
QByteArray buf = val.toUtf8();
ASN1_UTF8STRING *str = ASN1_UTF8STRING_new();
ASN1_STRING_set((ASN1_STRING *)str, (unsigned char *)buf.data(), buf.size());
ASN1_TYPE *at = ASN1_TYPE_new();
at->type = V_ASN1_UTF8STRING;
at->value.utf8string = str;
OTHERNAME *other = OTHERNAME_new();
other->type_id = OBJ_txt2obj("1.3.6.1.5.5.7.8.5", 1); // 1 = only accept dotted input
other->value = at;
name = GENERAL_NAME_new();
name->type = GEN_OTHERNAME;
name->d.otherName = other;
break;
}
default:
break;
}
return name;
}
static void try_add_general_name(GENERAL_NAMES **gn, const CertificateInfoType &t, const QString &val)
{
if(val.isEmpty())
return;
GENERAL_NAME *name = new_general_name(t, val);
if(name)
{
if(!(*gn))
*gn = sk_GENERAL_NAME_new_null();
sk_GENERAL_NAME_push(*gn, name);
}
}
static X509_EXTENSION *new_cert_subject_alt_name(const CertificateInfo &info)
{
GENERAL_NAMES *gn = 0;
// FIXME support multiple items of each type
try_add_general_name(&gn, Email, info.value(Email));
try_add_general_name(&gn, URI, info.value(URI));
try_add_general_name(&gn, DNS, info.value(DNS));
try_add_general_name(&gn, IPAddress, info.value(IPAddress));
try_add_general_name(&gn, XMPP, info.value(XMPP));
if(!gn)
return 0;
X509_EXTENSION *ex = X509V3_EXT_i2d(NID_subject_alt_name, 0, gn);
sk_GENERAL_NAME_pop_free(gn, GENERAL_NAME_free);
return ex;
}
static GENERAL_NAME *find_next_general_name(GENERAL_NAMES *names, int type, int *pos)
{
int temp = *pos;
GENERAL_NAME *gn = 0;
*pos = -1;
for(int n = temp; n < sk_GENERAL_NAME_num(names); ++n)
{
GENERAL_NAME *i = sk_GENERAL_NAME_value(names, n);
if(i->type == type)
{
gn = i;
*pos = n;
break;
}
}
return gn;
}
static QByteArray qca_ASN1_STRING_toByteArray(ASN1_STRING *x)
{
return QByteArray(reinterpret_cast<const char *>(ASN1_STRING_get0_data(x)), ASN1_STRING_length(x));
}
static void try_get_general_name(GENERAL_NAMES *names, const CertificateInfoType &t, CertificateInfo *info)
{
switch(t.known())
{
case Email:
{
int pos = 0;
while (pos != -1)
{
GENERAL_NAME *gn = find_next_general_name(names, GEN_EMAIL, &pos);
if (pos != -1)
{
QByteArray cs = qca_ASN1_STRING_toByteArray(gn->d.rfc822Name);
info->insert(t, QString::fromLatin1(cs));
++pos;
}
}
break;
}
case URI:
{
int pos = 0;
while (pos != -1)
{
GENERAL_NAME *gn = find_next_general_name(names, GEN_URI, &pos);
if (pos != -1)
{
QByteArray cs= qca_ASN1_STRING_toByteArray(gn->d.uniformResourceIdentifier);
info->insert(t, QString::fromLatin1(cs));
++pos;
}
}
break;
}
case DNS:
{
int pos = 0;
while (pos != -1)
{
GENERAL_NAME *gn = find_next_general_name(names, GEN_DNS, &pos);
if (pos != -1)
{
QByteArray cs = qca_ASN1_STRING_toByteArray(gn->d.dNSName);
info->insert(t, QString::fromLatin1(cs));
++pos;
}
}
break;
}
case IPAddress:
{
int pos = 0;
while (pos != -1)
{
GENERAL_NAME *gn = find_next_general_name(names, GEN_IPADD, &pos);
if (pos != -1)
{
ASN1_OCTET_STRING *str = gn->d.iPAddress;
QByteArray buf = qca_ASN1_STRING_toByteArray(str);
QString out;
// IPv4 (TODO: handle IPv6)
if(buf.size() == 4)
{
out = "0.0.0.0";
}
else
break;
info->insert(t, out);
++pos;
}
}
break;
}
case XMPP:
{
int pos = 0;
while( pos != -1)
{
GENERAL_NAME *gn = find_next_general_name(names, GEN_OTHERNAME, &pos);
if (pos != -1)
{
OTHERNAME *other = gn->d.otherName;
if(!other)
break;
ASN1_OBJECT *obj = OBJ_txt2obj("1.3.6.1.5.5.7.8.5", 1); // 1 = only accept dotted input
if(OBJ_cmp(other->type_id, obj) != 0)
break;
ASN1_OBJECT_free(obj);
ASN1_TYPE *at = other->value;
if(at->type != V_ASN1_UTF8STRING)
break;
ASN1_UTF8STRING *str = at->value.utf8string;
QByteArray buf = qca_ASN1_STRING_toByteArray(str);
info->insert(t, QString::fromUtf8(buf));
++pos;
}
}
break;
}
default:
break;
}
}
static CertificateInfo get_cert_alt_name(X509_EXTENSION *ex)
{
CertificateInfo info;
GENERAL_NAMES *gn = (GENERAL_NAMES *)X509V3_EXT_d2i(ex);
try_get_general_name(gn, Email, &info);
try_get_general_name(gn, URI, &info);
try_get_general_name(gn, DNS, &info);
try_get_general_name(gn, IPAddress, &info);
try_get_general_name(gn, XMPP, &info);
GENERAL_NAMES_free(gn);
return info;
}
static X509_EXTENSION *new_cert_key_usage(const Constraints &constraints)
{
ASN1_BIT_STRING *keyusage = 0;
for(int n = 0; n < constraints.count(); ++n)
{
int bit = -1;
switch(constraints[n].known())
{
case DigitalSignature:
bit = Bit_DigitalSignature;
break;
case NonRepudiation:
bit = Bit_NonRepudiation;
break;
case KeyEncipherment:
bit = Bit_KeyEncipherment;
break;
case DataEncipherment:
bit = Bit_DataEncipherment;
break;
case KeyAgreement:
bit = Bit_KeyAgreement;
break;
case KeyCertificateSign:
bit = Bit_KeyCertificateSign;
break;
case CRLSign:
bit = Bit_CRLSign;
break;
case EncipherOnly:
bit = Bit_EncipherOnly;
break;
case DecipherOnly:
bit = Bit_DecipherOnly;
break;
default:
break;
}
if(bit != -1)
{
if(!keyusage)
keyusage = ASN1_BIT_STRING_new();
ASN1_BIT_STRING_set_bit(keyusage, bit, 1);
}
}
if(!keyusage)
return 0;
X509_EXTENSION *ex = X509V3_EXT_i2d(NID_key_usage, 1, keyusage); // 1 = critical
ASN1_BIT_STRING_free(keyusage);
return ex;
}
static Constraints get_cert_key_usage(X509_EXTENSION *ex)
{
Constraints constraints;
int bit_table[9] =
{
DigitalSignature,
NonRepudiation,
KeyEncipherment,
DataEncipherment,
KeyAgreement,
KeyCertificateSign,
CRLSign,
EncipherOnly,
DecipherOnly
};
ASN1_BIT_STRING *keyusage = (ASN1_BIT_STRING *)X509V3_EXT_d2i(ex);
for(int n = 0; n < 9; ++n)
{
if(ASN1_BIT_STRING_get_bit(keyusage, n))
constraints += ConstraintType((ConstraintTypeKnown)bit_table[n]);
}
ASN1_BIT_STRING_free(keyusage);
return constraints;
}
static X509_EXTENSION *new_cert_ext_key_usage(const Constraints &constraints)
{
EXTENDED_KEY_USAGE *extkeyusage = 0;
for(int n = 0; n < constraints.count(); ++n)
{
int nid = -1;
// TODO: don't use known/nid, and instead just use OIDs
switch(constraints[n].known())
{
case ServerAuth:
nid = NID_server_auth;
break;
case ClientAuth:
nid = NID_client_auth;
break;
case CodeSigning:
nid = NID_code_sign;
break;
case EmailProtection:
nid = NID_email_protect;
break;
case IPSecEndSystem:
nid = NID_ipsecEndSystem;
break;
case IPSecTunnel:
nid = NID_ipsecTunnel;
break;
case IPSecUser:
nid = NID_ipsecUser;
break;
case TimeStamping:
nid = NID_time_stamp;
break;
case OCSPSigning:
nid = NID_OCSP_sign;
break;
default:
break;
}
if(nid != -1)
{
if(!extkeyusage)
extkeyusage = sk_ASN1_OBJECT_new_null();
ASN1_OBJECT *obj = OBJ_nid2obj(nid);
sk_ASN1_OBJECT_push(extkeyusage, obj);
}
}
if(!extkeyusage)
return 0;
X509_EXTENSION *ex = X509V3_EXT_i2d(NID_ext_key_usage, 0, extkeyusage); // 0 = not critical
sk_ASN1_OBJECT_pop_free(extkeyusage, ASN1_OBJECT_free);
return ex;
}
static Constraints get_cert_ext_key_usage(X509_EXTENSION *ex)
{
Constraints constraints;
EXTENDED_KEY_USAGE *extkeyusage = (EXTENDED_KEY_USAGE *)X509V3_EXT_d2i(ex);
for(int n = 0; n < sk_ASN1_OBJECT_num(extkeyusage); ++n)
{
ASN1_OBJECT *obj = sk_ASN1_OBJECT_value(extkeyusage, n);
int nid = OBJ_obj2nid(obj);
if(nid == NID_undef)
continue;
// TODO: don't use known/nid, and instead just use OIDs
int t = -1;
switch(nid)
{
case NID_server_auth:
t = ServerAuth;
break;
case NID_client_auth:
t = ClientAuth;
break;
case NID_code_sign:
t = CodeSigning;
break;
case NID_email_protect:
t = EmailProtection;
break;
case NID_ipsecEndSystem:
t = IPSecEndSystem;
break;
case NID_ipsecTunnel:
t = IPSecTunnel;
break;
case NID_ipsecUser:
t = IPSecUser;
break;
case NID_time_stamp:
t = TimeStamping;
break;
case NID_OCSP_sign:
t = OCSPSigning;
break;
};
if(t == -1)
continue;
constraints.append(ConstraintType((ConstraintTypeKnown)t));
}
sk_ASN1_OBJECT_pop_free(extkeyusage, ASN1_OBJECT_free);
return constraints;
}
static X509_EXTENSION *new_cert_policies(const QStringList &policies)
{
STACK_OF(POLICYINFO) *pols = 0;
for(int n = 0; n < policies.count(); ++n)
{
QByteArray cs = policies[n].toLatin1();
ASN1_OBJECT *obj = OBJ_txt2obj(cs.data(), 1); // 1 = only accept dotted input
if(!obj)
continue;
if(!pols)
pols = sk_POLICYINFO_new_null();
POLICYINFO *pol = POLICYINFO_new();
pol->policyid = obj;
sk_POLICYINFO_push(pols, pol);
}
if(!pols)
return 0;
X509_EXTENSION *ex = X509V3_EXT_i2d(NID_certificate_policies, 0, pols); // 0 = not critical
sk_POLICYINFO_pop_free(pols, POLICYINFO_free);
return ex;
}
static QStringList get_cert_policies(X509_EXTENSION *ex)
{
QStringList out;
STACK_OF(POLICYINFO) *pols = (STACK_OF(POLICYINFO) *)X509V3_EXT_d2i(ex);
for(int n = 0; n < sk_POLICYINFO_num(pols); ++n)
{
POLICYINFO *pol = sk_POLICYINFO_value(pols, n);
QByteArray buf(128, 0);
OBJ_obj2txt((char *)buf.data(), buf.size(), pol->policyid, 1); // 1 = only accept dotted input
out += QString::fromLatin1(buf);
}
sk_POLICYINFO_pop_free(pols, POLICYINFO_free);
return out;
}
static QByteArray get_cert_subject_key_id(X509_EXTENSION *ex)
{
ASN1_OCTET_STRING *skid = (ASN1_OCTET_STRING *)X509V3_EXT_d2i(ex);
QByteArray out = qca_ASN1_STRING_toByteArray(skid);
ASN1_OCTET_STRING_free(skid);
return out;
}
// If you get any more crashes in this code, please provide a copy
// of the cert to bradh AT frogmouth.net
static QByteArray get_cert_issuer_key_id(X509_EXTENSION *ex)
{
AUTHORITY_KEYID *akid = (AUTHORITY_KEYID *)X509V3_EXT_d2i(ex);
QByteArray out;
if (akid->keyid)
out = qca_ASN1_STRING_toByteArray(akid->keyid);
AUTHORITY_KEYID_free(akid);
return out;
}
static Validity convert_verify_error(int err)
{
// TODO: ErrorExpiredCA
Validity rc;
switch(err)
{
case X509_V_ERR_CERT_REJECTED:
rc = ErrorRejected;
break;
case X509_V_ERR_CERT_UNTRUSTED:
rc = ErrorUntrusted;
break;
case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE:
case X509_V_ERR_CERT_SIGNATURE_FAILURE:
case X509_V_ERR_CRL_SIGNATURE_FAILURE:
case X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE:
case X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE:
rc = ErrorSignatureFailed;
break;
case X509_V_ERR_INVALID_CA:
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
case X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY:
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY:
rc = ErrorInvalidCA;
break;
case X509_V_ERR_INVALID_PURPOSE: // note: not used by store verify
rc = ErrorInvalidPurpose;
break;
case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT:
case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN:
rc = ErrorSelfSigned;
break;
case X509_V_ERR_CERT_REVOKED:
rc = ErrorRevoked;
break;
case X509_V_ERR_PATH_LENGTH_EXCEEDED:
rc = ErrorPathLengthExceeded;
break;
case X509_V_ERR_CERT_NOT_YET_VALID:
case X509_V_ERR_CERT_HAS_EXPIRED:
case X509_V_ERR_CRL_NOT_YET_VALID:
case X509_V_ERR_CRL_HAS_EXPIRED:
case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
case X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD:
case X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD:
rc = ErrorExpired;
break;
case X509_V_ERR_APPLICATION_VERIFICATION:
case X509_V_ERR_OUT_OF_MEM:
case X509_V_ERR_UNABLE_TO_GET_CRL:
case X509_V_ERR_CERT_CHAIN_TOO_LONG:
default:
rc = ErrorValidityUnknown;
break;
}
return rc;
}
EVP_PKEY *qca_d2i_PKCS8PrivateKey(const SecureArray &in, EVP_PKEY **x, pem_password_cb *cb, void *u)
{
PKCS8_PRIV_KEY_INFO *p8inf;
// first try unencrypted form
BIO *bi = BIO_new(BIO_s_mem());
BIO_write(bi, in.data(), in.size());
p8inf = d2i_PKCS8_PRIV_KEY_INFO_bio(bi, NULL);
BIO_free(bi);
if(!p8inf)
{
X509_SIG *p8;
// now try encrypted form
bi = BIO_new(BIO_s_mem());
BIO_write(bi, in.data(), in.size());
p8 = d2i_PKCS8_bio(bi, NULL);
BIO_free(bi);
if(!p8)
return NULL;
// get passphrase
char psbuf[PEM_BUFSIZE];
int klen;
if(cb)
klen = cb(psbuf, PEM_BUFSIZE, 0, u);
else
klen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u);
if(klen <= 0)
{
PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_BIO, PEM_R_BAD_PASSWORD_READ);
X509_SIG_free(p8);
return NULL;
}
// decrypt it
p8inf = PKCS8_decrypt(p8, psbuf, klen);
X509_SIG_free(p8);
if(!p8inf)
return NULL;
}
EVP_PKEY *ret = EVP_PKCS82PKEY(p8inf);
PKCS8_PRIV_KEY_INFO_free(p8inf);
if(!ret)
return NULL;
if(x)
{
if(*x)
EVP_PKEY_free(*x);
*x = ret;
}
return ret;
}
class opensslHashContext : public HashContext
{
Q_OBJECT
public:
opensslHashContext(const EVP_MD *algorithm, Provider *p, const QString &type) : HashContext(p, type)
{
m_algorithm = algorithm;
m_context = EVP_MD_CTX_new();
EVP_DigestInit( m_context, m_algorithm );
}
opensslHashContext(const opensslHashContext &other)
: HashContext(other)
{
m_algorithm = other.m_algorithm;
m_context = EVP_MD_CTX_new();
EVP_MD_CTX_copy_ex(m_context, other.m_context);
}
~opensslHashContext()
{
EVP_MD_CTX_free(m_context);
}
void clear() override
{
EVP_MD_CTX_free(m_context);
m_context = EVP_MD_CTX_new();
EVP_DigestInit( m_context, m_algorithm );
}
void update(const MemoryRegion &a) override
{
EVP_DigestUpdate( m_context, (unsigned char*)a.data(), a.size() );
}
MemoryRegion final() override
{
SecureArray a( EVP_MD_size( m_algorithm ) );
EVP_DigestFinal( m_context, (unsigned char*)a.data(), 0 );
return a;
}
Provider::Context *clone() const override
{
return new opensslHashContext(*this);
}
protected:
const EVP_MD *m_algorithm;
EVP_MD_CTX *m_context;
};
class opensslPbkdf1Context : public KDFContext
{
Q_OBJECT
public:
opensslPbkdf1Context(const EVP_MD *algorithm, Provider *p, const QString &type) : KDFContext(p, type)
{
m_algorithm = algorithm;
m_context = EVP_MD_CTX_new();
EVP_DigestInit( m_context, m_algorithm );
}
opensslPbkdf1Context(const opensslPbkdf1Context &other)
: KDFContext(other)
{
m_algorithm = other.m_algorithm;
m_context = EVP_MD_CTX_new();
EVP_MD_CTX_copy(m_context, other.m_context);
}
~opensslPbkdf1Context()
{
EVP_MD_CTX_free(m_context);
}
Provider::Context *clone() const override
{
return new opensslPbkdf1Context( *this );
}
SymmetricKey makeKey(const SecureArray &secret, const InitializationVector &salt,
unsigned int keyLength, unsigned int iterationCount) override
{
/* from RFC2898:
Steps:
1. If dkLen > 16 for MD2 and MD5, or dkLen > 20 for SHA-1, output
"derived key too long" and stop.
*/
if ( keyLength > (unsigned int)EVP_MD_size( m_algorithm ) ) {
std::cout << "derived key too long" << std::endl;
return SymmetricKey();
}
/*
2. Apply the underlying hash function Hash for c iterations to the
concatenation of the password P and the salt S, then extract
the first dkLen octets to produce a derived key DK:
T_1 = Hash (P || S) ,
T_2 = Hash (T_1) ,
...
T_c = Hash (T_{c-1}) ,
DK = Tc<0..dkLen-1>
*/
// calculate T_1
EVP_DigestUpdate( m_context, (unsigned char*)secret.data(), secret.size() );
EVP_DigestUpdate( m_context, (unsigned char*)salt.data(), salt.size() );
SecureArray a( EVP_MD_size( m_algorithm ) );
EVP_DigestFinal( m_context, (unsigned char*)a.data(), 0 );
// calculate T_2 up to T_c
for ( unsigned int i = 2; i <= iterationCount; ++i ) {
EVP_DigestInit( m_context, m_algorithm );
EVP_DigestUpdate( m_context, (unsigned char*)a.data(), a.size() );
EVP_DigestFinal( m_context, (unsigned char*)a.data(), 0 );
}
// shrink a to become DK, of the required length
a.resize(keyLength);
/*
3. Output the derived key DK.
*/
return a;
}
SymmetricKey makeKey(const SecureArray &secret,
const InitializationVector &salt,
unsigned int keyLength,
int msecInterval,
unsigned int *iterationCount) override
{
Q_ASSERT(iterationCount != NULL);
QElapsedTimer timer;
/* from RFC2898:
Steps:
1. If dkLen > 16 for MD2 and MD5, or dkLen > 20 for SHA-1, output
"derived key too long" and stop.
*/
if ( keyLength > (unsigned int)EVP_MD_size( m_algorithm ) ) {
std::cout << "derived key too long" << std::endl;
return SymmetricKey();
}
/*
2. Apply the underlying hash function Hash for M milliseconds
to the concatenation of the password P and the salt S, incrementing c,
then extract the first dkLen octets to produce a derived key DK:
time from M to 0
T_1 = Hash (P || S) ,
T_2 = Hash (T_1) ,
...
T_c = Hash (T_{c-1}) ,
when time = 0: stop,
DK = Tc<0..dkLen-1>
*/
// calculate T_1
EVP_DigestUpdate( m_context, (unsigned char*)secret.data(), secret.size() );
EVP_DigestUpdate( m_context, (unsigned char*)salt.data(), salt.size() );
SecureArray a( EVP_MD_size( m_algorithm ) );
EVP_DigestFinal( m_context, (unsigned char*)a.data(), 0 );
// calculate T_2 up to T_c
*iterationCount = 2 - 1; // <- Have to remove 1, unless it computes one
timer.start(); // ^ time more than the base function
// ^ with the same iterationCount
while (timer.elapsed() < msecInterval) {
EVP_DigestInit( m_context, m_algorithm );
EVP_DigestUpdate( m_context, (unsigned char*)a.data(), a.size() );
EVP_DigestFinal( m_context, (unsigned char*)a.data(), 0 );
++(*iterationCount);
}
// shrink a to become DK, of the required length
a.resize(keyLength);
/*
3. Output the derived key DK.
*/
return a;
}
protected:
const EVP_MD *m_algorithm;
EVP_MD_CTX *m_context;
};
class opensslPbkdf2Context : public KDFContext
{
Q_OBJECT
public:
opensslPbkdf2Context(Provider *p, const QString &type) : KDFContext(p, type)
{
}
Provider::Context *clone() const override
{
return new opensslPbkdf2Context( *this );
}
SymmetricKey makeKey(const SecureArray &secret, const InitializationVector &salt,
unsigned int keyLength, unsigned int iterationCount) override
{
SecureArray out(keyLength);
PKCS5_PBKDF2_HMAC_SHA1( (char*)secret.data(), secret.size(),
(unsigned char*)salt.data(), salt.size(),
iterationCount, keyLength, (unsigned char*)out.data() );
return out;
}
SymmetricKey makeKey(const SecureArray &secret,
const InitializationVector &salt,
unsigned int keyLength,
int msecInterval,
unsigned int *iterationCount) override
{
Q_ASSERT(iterationCount != NULL);
QElapsedTimer timer;
SecureArray out(keyLength);
*iterationCount = 0;
timer.start();
// PBKDF2 needs an iterationCount itself, unless PBKDF1.
// So we need to calculate first the number of iterations for
// That time interval, then feed the iterationCounts to PBKDF2
while (timer.elapsed() < msecInterval) {
PKCS5_PBKDF2_HMAC_SHA1((char*)secret.data(),
secret.size(),
(unsigned char*)salt.data(),
salt.size(),
1,
keyLength,
(unsigned char*)out.data());
++(*iterationCount);
}
// Now we can directely call makeKey base function,
// as we now have the iterationCount
out = makeKey(secret, salt, keyLength, *iterationCount);
return out;
}
protected:
};
#ifdef OSSL_110
class opensslHkdfContext : public HKDFContext
{
Q_OBJECT
public:
opensslHkdfContext(Provider *p, const QString &type) : HKDFContext(p, type)
{
}
Provider::Context *clone() const override
{
return new opensslHkdfContext( *this );
}
SymmetricKey makeKey(const SecureArray &secret, const InitializationVector &salt,
const InitializationVector &info, unsigned int keyLength) override
{
SecureArray out(keyLength);
EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
EVP_PKEY_derive_init(pctx);
EVP_PKEY_CTX_set_hkdf_md(pctx, EVP_sha256());
EVP_PKEY_CTX_set1_hkdf_salt(pctx, salt.data(), int(salt.size()));
EVP_PKEY_CTX_set1_hkdf_key(pctx, secret.data(), int(secret.size()));
EVP_PKEY_CTX_add1_hkdf_info(pctx, info.data(), int(info.size()));
size_t outlen = out.size();
EVP_PKEY_derive(pctx, reinterpret_cast<unsigned char*>(out.data()), &outlen);
EVP_PKEY_CTX_free(pctx);
return out;
}
};
#endif
class opensslHMACContext : public MACContext
{
Q_OBJECT
public:
opensslHMACContext(const EVP_MD *algorithm, Provider *p, const QString &type) : MACContext(p, type)
{
m_algorithm = algorithm;
m_context = HMAC_CTX_new();
#ifndef OSSL_110
HMAC_CTX_init( m_context );
#endif
}
opensslHMACContext(const opensslHMACContext &other)
: MACContext(other)
{
m_algorithm = other.m_algorithm;
m_context = HMAC_CTX_new();
HMAC_CTX_copy(m_context, other.m_context);
}
~opensslHMACContext()
{
HMAC_CTX_free(m_context);
}
void setup(const SymmetricKey &key) override
{
HMAC_Init_ex( m_context, key.data(), key.size(), m_algorithm, 0 );
}
KeyLength keyLength() const override
{
return anyKeyLength();
}
void update(const MemoryRegion &a) override
{
HMAC_Update( m_context, (unsigned char *)a.data(), a.size() );
}
void final(MemoryRegion *out) override
{
SecureArray sa( EVP_MD_size( m_algorithm ), 0 );
HMAC_Final(m_context, (unsigned char *)sa.data(), 0 );
#ifdef OSSL_110
HMAC_CTX_reset(m_context);
#else
HMAC_CTX_cleanup(m_context);
#endif
*out = sa;
}
Provider::Context *clone() const override
{
return new opensslHMACContext(*this);
}
protected:
HMAC_CTX *m_context;
const EVP_MD *m_algorithm;
};
//----------------------------------------------------------------------------
// EVPKey
//----------------------------------------------------------------------------
// note: this class squelches processing errors, since QCA doesn't care about them
class EVPKey
{
public:
enum State { Idle, SignActive, SignError, VerifyActive, VerifyError };
EVP_PKEY *pkey;
EVP_MD_CTX *mdctx;
State state;
bool raw_type;
SecureArray raw;
EVPKey()
{
pkey = 0;
raw_type = false;
state = Idle;
mdctx = EVP_MD_CTX_new();
}
EVPKey(const EVPKey &from)
{
pkey = from.pkey;
EVP_PKEY_up_ref(pkey);
raw_type = false;
state = Idle;
mdctx = EVP_MD_CTX_new();
EVP_MD_CTX_copy(mdctx, from.mdctx);
}
~EVPKey()
{
reset();
EVP_MD_CTX_free(mdctx);
}
void reset()
{
if(pkey)
EVP_PKEY_free(pkey);
pkey = 0;
raw.clear ();
raw_type = false;
}
void startSign(const EVP_MD *type)
{
state = SignActive;
if(!type)
{
raw_type = true;
raw.clear ();
}
else
{
raw_type = false;
EVP_MD_CTX_init(mdctx);
if(!EVP_SignInit_ex(mdctx, type, NULL))
state = SignError;
}
}
void startVerify(const EVP_MD *type)
{
state = VerifyActive;
if(!type)
{
raw_type = true;
raw.clear ();
}
else
{
raw_type = false;
EVP_MD_CTX_init(mdctx);
if(!EVP_VerifyInit_ex(mdctx, type, NULL))
state = VerifyError;
}
}
void update(const MemoryRegion &in)
{
if(state == SignActive)
{
if (raw_type)
raw += in;
else
if(!EVP_SignUpdate(mdctx, in.data(), (unsigned int)in.size()))
state = SignError;
}
else if(state == VerifyActive)
{
if (raw_type)
raw += in;
else
if(!EVP_VerifyUpdate(mdctx, in.data(), (unsigned int)in.size()))
state = VerifyError;
}
}
SecureArray endSign()
{
if(state == SignActive)
{
SecureArray out(EVP_PKEY_size(pkey));
unsigned int len = out.size();
if (raw_type)
{
int type = EVP_PKEY_id(pkey);
if (type == EVP_PKEY_RSA)
{
RSA *rsa = EVP_PKEY_get0_RSA(pkey);
if(RSA_private_encrypt (raw.size(), (unsigned char *)raw.data(),
(unsigned char *)out.data(), rsa,
RSA_PKCS1_PADDING) == -1) {
state = SignError;
return SecureArray ();
}
}
else if (type == EVP_PKEY_DSA)
{
state = SignError;
return SecureArray ();
}
else
{
state = SignError;
return SecureArray ();
}
}
else {
if(!EVP_SignFinal(mdctx, (unsigned char *)out.data(), &len, pkey))
{
state = SignError;
return SecureArray();
}
}
out.resize(len);
state = Idle;
return out;
}
else
return SecureArray();
}
bool endVerify(const SecureArray &sig)
{
if(state == VerifyActive)
{
if (raw_type)
{
SecureArray out(EVP_PKEY_size(pkey));
int len = 0;
int type = EVP_PKEY_id(pkey);
if (type == EVP_PKEY_RSA) {
RSA *rsa = EVP_PKEY_get0_RSA(pkey);
if((len = RSA_public_decrypt (sig.size(), (unsigned char *)sig.data(),
(unsigned char *)out.data (), rsa,
RSA_PKCS1_PADDING)) == -1) {
state = VerifyError;
return false;
}
}
else if (type == EVP_PKEY_DSA)
{
state = VerifyError;
return false;
}
else
{
state = VerifyError;
return false;
}
out.resize (len);
if (out != raw) {
state = VerifyError;
return false;
}
}
else
{
if(EVP_VerifyFinal(mdctx, (unsigned char *)sig.data(), (unsigned int)sig.size(), pkey) != 1)
{
state = VerifyError;
return false;
}
}
state = Idle;
return true;
}
else
return false;
}
};
//----------------------------------------------------------------------------
// MyDLGroup
//----------------------------------------------------------------------------
// IETF primes from Botan
const char* IETF_1024_PRIME =
"FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1"
"29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD"
"EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245"
"E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED"
"EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381"
"FFFFFFFF FFFFFFFF";
const char* IETF_2048_PRIME =
"FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1"
"29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD"
"EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245"
"E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED"
"EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D"
"C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F"
"83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D"
"670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B"
"E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9"
"DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510"
"15728E5A 8AACAA68 FFFFFFFF FFFFFFFF";
const char* IETF_4096_PRIME =
"FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1"
"29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD"
"EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245"
"E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED"
"EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D"
"C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F"
"83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D"
"670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B"
"E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9"
"DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510"
"15728E5A 8AAAC42D AD33170D 04507A33 A85521AB DF1CBA64"
"ECFB8504 58DBEF0A 8AEA7157 5D060C7D B3970F85 A6E1E4C7"
"ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226 1AD2EE6B"
"F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C"
"BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31"
"43DB5BFC E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7"
"88719A10 BDBA5B26 99C32718 6AF4E23C 1A946834 B6150BDA"
"2583E9CA 2AD44CE8 DBBBC2DB 04DE8EF9 2E8EFC14 1FBECAA6"
"287C5947 4E6BC05D 99B2964F A090C3A2 233BA186 515BE7ED"
"1F612970 CEE2D7AF B81BDD76 2170481C D0069127 D5B05AA9"
"93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34063199"
"FFFFFFFF FFFFFFFF";
// JCE seeds from Botan
const char* JCE_512_SEED = "B869C82B 35D70E1B 1FF91B28 E37A62EC DC34409B";
const int JCE_512_COUNTER = 123;
const char* JCE_768_SEED = "77D0F8C4 DAD15EB8 C4F2F8D6 726CEFD9 6D5BB399";
const int JCE_768_COUNTER = 263;
const char* JCE_1024_SEED = "8D515589 4229D5E6 89EE01E6 018A237E 2CAE64CD";
const int JCE_1024_COUNTER = 92;
static QByteArray dehex(const QString &hex)
{
QString str;
for(int n = 0; n < hex.length(); ++n)
{
if(hex[n] != ' ')
str += hex[n];
}
return hexToArray(str);
}
static BigInteger decode(const QString &prime)
{
QByteArray a(1, 0); // 1 byte of zero padding
a.append(dehex(prime));
return BigInteger(SecureArray(a));
}
#ifndef OPENSSL_FIPS
static QByteArray decode_seed(const QString &hex_seed)
{
return dehex(hex_seed);
}
#endif
class DLParams
{
public:
BigInteger p, q, g;
};
#ifndef OPENSSL_FIPS
namespace {
struct DsaDeleter
{
static inline void cleanup(void *pointer)
{
if (pointer)
DSA_free((DSA *)pointer);
}
};
} // end of anonymous namespace
static bool make_dlgroup(const QByteArray &seed, int bits, int counter, DLParams *params)
{
int ret_counter;
QScopedPointer<DSA, DsaDeleter> dsa(DSA_new());
if(!dsa)
return false;
if (DSA_generate_parameters_ex(dsa.data(), bits, (const unsigned char *)seed.data(), seed.size(),
&ret_counter, NULL, NULL) != 1)
return false;
if(ret_counter != counter)
return false;
const BIGNUM *bnp, *bnq, *bng;
DSA_get0_pqg(dsa.data(), &bnp, &bnq, &bng);
params->p = bn2bi(bnp);
params->q = bn2bi(bnq);
params->g = bn2bi(bng);
return true;
}
#endif
static bool get_dlgroup(const BigInteger &p, const BigInteger &g, DLParams *params)
{
params->p = p;
params->q = BigInteger(0);
params->g = g;
return true;
}
class DLGroupMaker : public QThread
{
Q_OBJECT
public:
DLGroupSet set;
bool ok;
DLParams params;
DLGroupMaker(DLGroupSet _set)
{
set = _set;
}
~DLGroupMaker()
{
wait();
}
void run() override
{
switch (set)
{
#ifndef OPENSSL_FIPS
case DSA_512:
ok = make_dlgroup(decode_seed(JCE_512_SEED), 512, JCE_512_COUNTER, &params);
break;
case DSA_768:
ok = make_dlgroup(decode_seed(JCE_768_SEED), 768, JCE_768_COUNTER, &params);
break;
case DSA_1024:
ok = make_dlgroup(decode_seed(JCE_1024_SEED), 1024, JCE_1024_COUNTER, &params);
break;
#endif
case IETF_1024:
ok = get_dlgroup(decode(IETF_1024_PRIME), 2, &params);
break;
case IETF_2048:
ok = get_dlgroup(decode(IETF_2048_PRIME), 2, &params);
break;
case IETF_4096:
ok = get_dlgroup(decode(IETF_4096_PRIME), 2, &params);
break;
default:
ok = false;
break;
}
}
};
class MyDLGroup : public DLGroupContext
{
Q_OBJECT
public:
DLGroupMaker *gm;
bool wasBlocking;
DLParams params;
bool empty;
MyDLGroup(Provider *p) : DLGroupContext(p)
{
gm = 0;
empty = true;
}
MyDLGroup(const MyDLGroup &from) : DLGroupContext(from.provider())
{
gm = 0;
empty = true;
}
~MyDLGroup()
{
delete gm;
}
Provider::Context *clone() const override
{
return new MyDLGroup(*this);
}
QList<DLGroupSet> supportedGroupSets() const override
{
QList<DLGroupSet> list;
// DSA_* was removed in FIPS specification
// https://bugzilla.redhat.com/show_bug.cgi?id=1144655
#ifndef OPENSSL_FIPS
list += DSA_512;
list += DSA_768;
list += DSA_1024;
#endif
list += IETF_1024;
list += IETF_2048;
list += IETF_4096;
return list;
}
bool isNull() const override
{
return empty;
}
void fetchGroup(DLGroupSet set, bool block) override
{
params = DLParams();
empty = true;
gm = new DLGroupMaker(set);
wasBlocking = block;
if(block)
{
gm->run();
gm_finished();
}
else
{
connect(gm, &DLGroupMaker::finished, this, &MyDLGroup::gm_finished);
gm->start();
}
}
void getResult(BigInteger *p, BigInteger *q, BigInteger *g) const override
{
*p = params.p;
*q = params.q;
*g = params.g;
}
private Q_SLOTS:
void gm_finished()
{
bool ok = gm->ok;
if(ok)
{
params = gm->params;
empty = false;
}
if(wasBlocking)
delete gm;
else
gm->deleteLater();
gm = 0;
if(!wasBlocking)
emit finished();
}
};
//----------------------------------------------------------------------------
// RSAKey
//----------------------------------------------------------------------------
namespace {
struct RsaDeleter
{
static inline void cleanup(void *pointer)
{
if (pointer)
RSA_free((RSA *)pointer);
}
};
struct BnDeleter
{
static inline void cleanup(void *pointer)
{
if (pointer)
BN_free((BIGNUM *)pointer);
}
};
} // end of anonymous namespace
class RSAKeyMaker : public QThread
{
Q_OBJECT
public:
RSA *result;
int bits, exp;
RSAKeyMaker(int _bits, int _exp, QObject *parent = nullptr) : QThread(parent), result(0), bits(_bits), exp(_exp)
{
}
~RSAKeyMaker()
{
wait();
if(result)
RSA_free(result);
}
void run() override
{
QScopedPointer<RSA, RsaDeleter> rsa(RSA_new());
if(!rsa)
return;
QScopedPointer<BIGNUM, BnDeleter> e(BN_new());
if(!e)
return;
BN_clear(e.data());
if (BN_set_word(e.data(), exp) != 1)
return;
if (RSA_generate_key_ex(rsa.data(), bits, e.data(), NULL) == 0)
return;
result = rsa.take();
}
RSA *takeResult()
{
RSA *rsa = result;
result = 0;
return rsa;
}
};
class RSAKey : public RSAContext
{
Q_OBJECT
public:
EVPKey evp;
RSAKeyMaker *keymaker;
bool wasBlocking;
bool sec;
RSAKey(Provider *p) : RSAContext(p)
{
keymaker = 0;
sec = false;
}
RSAKey(const RSAKey &from) : RSAContext(from.provider()), evp(from.evp)
{
keymaker = 0;
sec = from.sec;
}
~RSAKey()
{
delete keymaker;
}
Provider::Context *clone() const override
{
return new RSAKey(*this);
}
bool isNull() const override
{
return (evp.pkey ? false: true);
}
PKey::Type type() const override
{
return PKey::RSA;
}
bool isPrivate() const override
{
return sec;
}
bool canExport() const override
{
return true;
}
void convertToPublic() override
{
if(!sec)
return;
// extract the public key into DER format
RSA *rsa_pkey = EVP_PKEY_get0_RSA(evp.pkey);
int len = i2d_RSAPublicKey(rsa_pkey, NULL);
SecureArray result(len);
unsigned char *p = (unsigned char *)result.data();
i2d_RSAPublicKey(rsa_pkey, &p);
p = (unsigned char *)result.data();
// put the DER public key back into openssl
evp.reset();
RSA *rsa;
#ifdef OSSL_097
rsa = d2i_RSAPublicKey(NULL, (const unsigned char **)&p, result.size());
#else
rsa = d2i_RSAPublicKey(NULL, (unsigned char **)&p, result.size());
#endif
evp.pkey = EVP_PKEY_new();
EVP_PKEY_assign_RSA(evp.pkey, rsa);
sec = false;
}
int bits() const override
{
return EVP_PKEY_bits(evp.pkey);
}
int maximumEncryptSize(EncryptionAlgorithm alg) const override
{
RSA *rsa = EVP_PKEY_get0_RSA(evp.pkey);
int size = 0;
switch(alg)
{
case EME_PKCS1v15: size = RSA_size(rsa) - 11 - 1; break;
case EME_PKCS1_OAEP: size = RSA_size(rsa) - 41 - 1; break;
case EME_PKCS1v15_SSL: size = RSA_size(rsa) - 11 - 1; break;
case EME_NO_PADDING: size = RSA_size(rsa) - 1; break;
}
return size;
}
SecureArray encrypt(const SecureArray &in, EncryptionAlgorithm alg) override
{
RSA *rsa = EVP_PKEY_get0_RSA(evp.pkey);
SecureArray buf = in;
int max = maximumEncryptSize(alg);
if(buf.size() > max)
buf.resize(max);
SecureArray result(RSA_size(rsa));
int pad;
switch(alg)
{
case EME_PKCS1v15: pad = RSA_PKCS1_PADDING; break;
case EME_PKCS1_OAEP: pad = RSA_PKCS1_OAEP_PADDING; break;
case EME_PKCS1v15_SSL: pad = RSA_SSLV23_PADDING; break;
case EME_NO_PADDING: pad = RSA_NO_PADDING; break;
default: return SecureArray(); break;
}
int ret;
if (isPrivate())
ret = RSA_private_encrypt(buf.size(), (unsigned char *)buf.data(), (unsigned char *)result.data(), rsa, pad);
else
ret = RSA_public_encrypt(buf.size(), (unsigned char *)buf.data(), (unsigned char *)result.data(), rsa, pad);
if(ret < 0)
return SecureArray();
result.resize(ret);
return result;
}
bool decrypt(const SecureArray &in, SecureArray *out, EncryptionAlgorithm alg) override
{
RSA *rsa = EVP_PKEY_get0_RSA(evp.pkey);
SecureArray result(RSA_size(rsa));
int pad;
switch(alg)
{
case EME_PKCS1v15: pad = RSA_PKCS1_PADDING; break;
case EME_PKCS1_OAEP: pad = RSA_PKCS1_OAEP_PADDING; break;
case EME_PKCS1v15_SSL: pad = RSA_SSLV23_PADDING; break;
case EME_NO_PADDING: pad = RSA_NO_PADDING; break;
default: return false; break;
}
int ret;
if (isPrivate())
ret = RSA_private_decrypt(in.size(), (unsigned char *)in.data(), (unsigned char *)result.data(), rsa, pad);
else
ret = RSA_public_decrypt(in.size(), (unsigned char *)in.data(), (unsigned char *)result.data(), rsa, pad);
if(ret < 0)
return false;
result.resize(ret);
*out = result;
return true;
}
void startSign(SignatureAlgorithm alg, SignatureFormat) override
{
const EVP_MD *md = 0;
if(alg == EMSA3_SHA1)
md = EVP_sha1();
else if(alg == EMSA3_MD5)
md = EVP_md5();
#ifdef HAVE_OPENSSL_MD2
else if(alg == EMSA3_MD2)
md = EVP_md2();
#endif
else if(alg == EMSA3_RIPEMD160)
md = EVP_ripemd160();
else if(alg == EMSA3_SHA224)
md = EVP_sha224();
else if(alg == EMSA3_SHA256)
md = EVP_sha256();
else if(alg == EMSA3_SHA384)
md = EVP_sha384();
else if(alg == EMSA3_SHA512)
md = EVP_sha512();
else if(alg == EMSA3_Raw)
{
// md = 0
}
evp.startSign(md);
}
void startVerify(SignatureAlgorithm alg, SignatureFormat) override
{
const EVP_MD *md = 0;
if(alg == EMSA3_SHA1)
md = EVP_sha1();
else if(alg == EMSA3_MD5)
md = EVP_md5();
#ifdef HAVE_OPENSSL_MD2
else if(alg == EMSA3_MD2)
md = EVP_md2();
#endif
else if(alg == EMSA3_RIPEMD160)
md = EVP_ripemd160();
else if(alg == EMSA3_SHA224)
md = EVP_sha224();
else if(alg == EMSA3_SHA256)
md = EVP_sha256();
else if(alg == EMSA3_SHA384)
md = EVP_sha384();
else if(alg == EMSA3_SHA512)
md = EVP_sha512();
else if(alg == EMSA3_Raw)
{
// md = 0
}
evp.startVerify(md);
}
void update(const MemoryRegion &in) override
{
evp.update(in);
}
QByteArray endSign() override
{
return evp.endSign().toByteArray();
}
bool endVerify(const QByteArray &sig) override
{
return evp.endVerify(sig);
}
void createPrivate(int bits, int exp, bool block) override
{
evp.reset();
keymaker = new RSAKeyMaker(bits, exp, !block ? this : 0);
wasBlocking = block;
if(block)
{
keymaker->run();
km_finished();
}
else
{
connect(keymaker, &RSAKeyMaker::finished, this, &RSAKey::km_finished);
keymaker->start();
}
}
void createPrivate(const BigInteger &n, const BigInteger &e, const BigInteger &p, const BigInteger &q, const BigInteger &d) override
{
evp.reset();
RSA *rsa = RSA_new();
if(RSA_set0_key(rsa, bi2bn(n), bi2bn(e), bi2bn(d)) == 0
|| RSA_set0_factors(rsa, bi2bn(p), bi2bn(q)) == 0)
{
// Free BIGNUMS?
RSA_free(rsa);
return;
}
// When private key has no Public Exponent (e) or Private Exponent (d)
// need to disable blinding. Otherwise decryption will be broken.
// http://www.mail-archive.com/openssl-users@openssl.org/msg63530.html
if(e == BigInteger(0) || d == BigInteger(0))
RSA_blinding_off(rsa);
evp.pkey = EVP_PKEY_new();
EVP_PKEY_assign_RSA(evp.pkey, rsa);
sec = true;
}
void createPublic(const BigInteger &n, const BigInteger &e) override
{
evp.reset();
RSA *rsa = RSA_new();
if(RSA_set0_key(rsa, bi2bn(n), bi2bn(e), NULL) == 0)
{
RSA_free(rsa);
return;
}
evp.pkey = EVP_PKEY_new();
EVP_PKEY_assign_RSA(evp.pkey, rsa);
sec = false;
}
BigInteger n() const override
{
RSA *rsa = EVP_PKEY_get0_RSA(evp.pkey);
const BIGNUM *bnn;
RSA_get0_key(rsa, &bnn, NULL, NULL);
return bn2bi(bnn);
}
BigInteger e() const override
{
RSA *rsa = EVP_PKEY_get0_RSA(evp.pkey);
const BIGNUM *bne;
RSA_get0_key(rsa, NULL, &bne, NULL);
return bn2bi(bne);
}
BigInteger p() const override
{
RSA *rsa = EVP_PKEY_get0_RSA(evp.pkey);
const BIGNUM *bnp;
RSA_get0_factors(rsa, &bnp, NULL);
return bn2bi(bnp);
}
BigInteger q() const override
{
RSA *rsa = EVP_PKEY_get0_RSA(evp.pkey);
const BIGNUM *bnq;
RSA_get0_factors(rsa, NULL, &bnq);
return bn2bi(bnq);
}
BigInteger d() const override
{
RSA *rsa = EVP_PKEY_get0_RSA(evp.pkey);
const BIGNUM *bnd;
RSA_get0_key(rsa, NULL, NULL, &bnd);
return bn2bi(bnd);
}
private Q_SLOTS:
void km_finished()
{
RSA *rsa = keymaker->takeResult();
if(wasBlocking)
delete keymaker;
else
keymaker->deleteLater();
keymaker = 0;
if(rsa)
{
evp.pkey = EVP_PKEY_new();
EVP_PKEY_assign_RSA(evp.pkey, rsa);
sec = true;
}
if(!wasBlocking)
emit finished();
}
};
//----------------------------------------------------------------------------
// DSAKey
//----------------------------------------------------------------------------
class DSAKeyMaker : public QThread
{
Q_OBJECT
public:
DLGroup domain;
DSA *result;
DSAKeyMaker(const DLGroup &_domain, QObject *parent = nullptr) : QThread(parent), domain(_domain), result(0)
{
}
~DSAKeyMaker()
{
wait();
if(result)
DSA_free(result);
}
void run() override
{
DSA *dsa = DSA_new();
BIGNUM *pne = bi2bn(domain.p()),
*qne = bi2bn(domain.q()),
*gne = bi2bn(domain.g());
if(!DSA_set0_pqg(dsa, pne, qne, gne)
|| !DSA_generate_key(dsa))
{
DSA_free(dsa);
return;
}
result = dsa;
}
DSA *takeResult()
{
DSA *dsa = result;
result = 0;
return dsa;
}
};
// note: DSA doesn't use SignatureAlgorithm, since EMSA1 is always assumed
class DSAKey : public DSAContext
{
Q_OBJECT
public:
EVPKey evp;
DSAKeyMaker *keymaker;
bool wasBlocking;
bool transformsig;
bool sec;
DSAKey(Provider *p) : DSAContext(p)
{
keymaker = 0;
sec = false;
}
DSAKey(const DSAKey &from) : DSAContext(from.provider()), evp(from.evp)
{
keymaker = 0;
sec = from.sec;
}
~DSAKey()
{
delete keymaker;
}
Provider::Context *clone() const override
{
return new DSAKey(*this);
}
bool isNull() const override
{
return (evp.pkey ? false: true);
}
PKey::Type type() const override
{
return PKey::DSA;
}
bool isPrivate() const override
{
return sec;
}
bool canExport() const override
{
return true;
}
void convertToPublic() override
{
if(!sec)
return;
// extract the public key into DER format
DSA *dsa_pkey = EVP_PKEY_get0_DSA(evp.pkey);
int len = i2d_DSAPublicKey(dsa_pkey, NULL);
SecureArray result(len);
unsigned char *p = (unsigned char *)result.data();
i2d_DSAPublicKey(dsa_pkey, &p);
p = (unsigned char *)result.data();
// put the DER public key back into openssl
evp.reset();
DSA *dsa;
#ifdef OSSL_097
dsa = d2i_DSAPublicKey(NULL, (const unsigned char **)&p, result.size());
#else
dsa = d2i_DSAPublicKey(NULL, (unsigned char **)&p, result.size());
#endif
evp.pkey = EVP_PKEY_new();
EVP_PKEY_assign_DSA(evp.pkey, dsa);
sec = false;
}
int bits() const override
{
return EVP_PKEY_bits(evp.pkey);
}
void startSign(SignatureAlgorithm, SignatureFormat format) override
{
// openssl native format is DER, so transform otherwise
if(format != DERSequence)
transformsig = true;
else
transformsig = false;
evp.startSign(EVP_sha1());
}
void startVerify(SignatureAlgorithm, SignatureFormat format) override
{
// openssl native format is DER, so transform otherwise
if(format != DERSequence)
transformsig = true;
else
transformsig = false;
evp.startVerify(EVP_sha1());
}
void update(const MemoryRegion &in) override
{
evp.update(in);
}
QByteArray endSign() override
{
SecureArray out = evp.endSign();
if(transformsig)
return dsasig_der_to_raw(out).toByteArray();
else
return out.toByteArray();
}
bool endVerify(const QByteArray &sig) override
{
SecureArray in;
if(transformsig)
in = dsasig_raw_to_der(sig);
else
in = sig;
return evp.endVerify(in);
}
void createPrivate(const DLGroup &domain, bool block) override
{
evp.reset();
keymaker = new DSAKeyMaker(domain, !block ? this : 0);
wasBlocking = block;
if(block)
{
keymaker->run();
km_finished();
}
else
{
connect(keymaker, &DSAKeyMaker::finished, this, &DSAKey::km_finished);
keymaker->start();
}
}
void createPrivate(const DLGroup &domain, const BigInteger &y, const BigInteger &x) override
{
evp.reset();
DSA *dsa = DSA_new();
BIGNUM *bnp = bi2bn(domain.p());
BIGNUM *bnq = bi2bn(domain.q());
BIGNUM *bng = bi2bn(domain.g());
BIGNUM *bnpub_key = bi2bn(y);
BIGNUM *bnpriv_key = bi2bn(x);
if(!DSA_set0_pqg(dsa, bnp, bnq, bng)
|| !DSA_set0_key(dsa, bnpub_key, bnpriv_key))
{
DSA_free(dsa);
return;
}
evp.pkey = EVP_PKEY_new();
EVP_PKEY_assign_DSA(evp.pkey, dsa);
sec = true;
}
void createPublic(const DLGroup &domain, const BigInteger &y) override
{
evp.reset();
DSA *dsa = DSA_new();
BIGNUM *bnp = bi2bn(domain.p());
BIGNUM *bnq = bi2bn(domain.q());
BIGNUM *bng = bi2bn(domain.g());
BIGNUM *bnpub_key = bi2bn(y);
if(!DSA_set0_pqg(dsa, bnp, bnq, bng)
|| !DSA_set0_key(dsa, bnpub_key, NULL))
{
DSA_free(dsa);
return;
}
evp.pkey = EVP_PKEY_new();
EVP_PKEY_assign_DSA(evp.pkey, dsa);
sec = false;
}
DLGroup domain() const override
{
DSA *dsa = EVP_PKEY_get0_DSA(evp.pkey);
const BIGNUM *bnp, *bnq, *bng;
DSA_get0_pqg(dsa, &bnp, &bnq, &bng);
return DLGroup(bn2bi(bnp), bn2bi(bnq), bn2bi(bng));
}
BigInteger y() const override
{
DSA *dsa = EVP_PKEY_get0_DSA(evp.pkey);
const BIGNUM *bnpub_key;
DSA_get0_key(dsa, &bnpub_key, NULL);
return bn2bi(bnpub_key);
}
BigInteger x() const override
{
DSA *dsa = EVP_PKEY_get0_DSA(evp.pkey);
const BIGNUM *bnpriv_key;
DSA_get0_key(dsa, NULL, &bnpriv_key);
return bn2bi(bnpriv_key);
}
private Q_SLOTS:
void km_finished()
{
DSA *dsa = keymaker->takeResult();
if(wasBlocking)
delete keymaker;
else
keymaker->deleteLater();
keymaker = 0;
if(dsa)
{
evp.pkey = EVP_PKEY_new();
EVP_PKEY_assign_DSA(evp.pkey, dsa);
sec = true;
}
if(!wasBlocking)
emit finished();
}
};
//----------------------------------------------------------------------------
// DHKey
//----------------------------------------------------------------------------
class DHKeyMaker : public QThread
{
Q_OBJECT
public:
DLGroup domain;
DH *result;
DHKeyMaker(const DLGroup &_domain, QObject *parent = nullptr) : QThread(parent), domain(_domain), result(0)
{
}
~DHKeyMaker()
{
wait();
if(result)
DH_free(result);
}
void run() override
{
DH *dh = DH_new();
BIGNUM *bnp = bi2bn(domain.p());
BIGNUM *bng = bi2bn(domain.g());
if(!DH_set0_pqg(dh, bnp, NULL, bng)
|| !DH_generate_key(dh))
{
DH_free(dh);
return;
}
result = dh;
}
DH *takeResult()
{
DH *dh = result;
result = 0;
return dh;
}
};
class DHKey : public DHContext
{
Q_OBJECT
public:
EVPKey evp;
DHKeyMaker *keymaker;
bool wasBlocking;
bool sec;
DHKey(Provider *p) : DHContext(p)
{
keymaker = 0;
sec = false;
}
DHKey(const DHKey &from) : DHContext(from.provider()), evp(from.evp)
{
keymaker = 0;
sec = from.sec;
}
~DHKey()
{
delete keymaker;
}
Provider::Context *clone() const override
{
return new DHKey(*this);
}
bool isNull() const override
{
return (evp.pkey ? false: true);
}
PKey::Type type() const override
{
return PKey::DH;
}
bool isPrivate() const override
{
return sec;
}
bool canExport() const override
{
return true;
}
void convertToPublic() override
{
if(!sec)
return;
DH *orig = EVP_PKEY_get0_DH(evp.pkey);
DH *dh = DH_new();
const BIGNUM *bnp, *bng, *bnpub_key;
DH_get0_pqg(orig, &bnp, NULL, &bng);
DH_get0_key(orig, &bnpub_key, NULL);
DH_set0_key(dh, BN_dup(bnpub_key), NULL);
DH_set0_pqg(dh, BN_dup(bnp), NULL, BN_dup(bng));
evp.reset();
evp.pkey = EVP_PKEY_new();
EVP_PKEY_assign_DH(evp.pkey, dh);
sec = false;
}
int bits() const override
{
return EVP_PKEY_bits(evp.pkey);
}
SymmetricKey deriveKey(const PKeyBase &theirs) override
{
DH *dh = EVP_PKEY_get0_DH(evp.pkey);
DH *them = EVP_PKEY_get0_DH(static_cast<const DHKey *>(&theirs)->evp.pkey);
const BIGNUM *bnpub_key;
DH_get0_key(them, &bnpub_key, NULL);
SecureArray result(DH_size(dh));
int ret = DH_compute_key((unsigned char *)result.data(), bnpub_key, dh);
if(ret <= 0)
return SymmetricKey();
result.resize(ret);
return SymmetricKey(result);
}
void createPrivate(const DLGroup &domain, bool block) override
{
evp.reset();
keymaker = new DHKeyMaker(domain, !block ? this : 0);
wasBlocking = block;
if(block)
{
keymaker->run();
km_finished();
}
else
{
connect(keymaker, &DHKeyMaker::finished, this, &DHKey::km_finished);
keymaker->start();
}
}
void createPrivate(const DLGroup &domain, const BigInteger &y, const BigInteger &x) override
{
evp.reset();
DH *dh = DH_new();
BIGNUM *bnp = bi2bn(domain.p());
BIGNUM *bng = bi2bn(domain.g());
BIGNUM *bnpub_key = bi2bn(y);
BIGNUM *bnpriv_key = bi2bn(x);
if(!DH_set0_key(dh, bnpub_key, bnpriv_key)
|| !DH_set0_pqg(dh, bnp, NULL, bng))
{
DH_free(dh);
return;
}
evp.pkey = EVP_PKEY_new();
EVP_PKEY_assign_DH(evp.pkey, dh);
sec = true;
}
void createPublic(const DLGroup &domain, const BigInteger &y) override
{
evp.reset();
DH *dh = DH_new();
BIGNUM *bnp = bi2bn(domain.p());
BIGNUM *bng = bi2bn(domain.g());
BIGNUM *bnpub_key = bi2bn(y);
if(!DH_set0_key(dh, bnpub_key, NULL)
|| !DH_set0_pqg(dh, bnp, NULL, bng))
{
DH_free(dh);
return;
}
evp.pkey = EVP_PKEY_new();
EVP_PKEY_assign_DH(evp.pkey, dh);
sec = false;
}
DLGroup domain() const override
{
DH *dh = EVP_PKEY_get0_DH(evp.pkey);
const BIGNUM *bnp, *bng;
DH_get0_pqg(dh, &bnp, NULL, &bng);
return DLGroup(bn2bi(bnp), bn2bi(bng));
}
BigInteger y() const override
{
DH *dh = EVP_PKEY_get0_DH(evp.pkey);
const BIGNUM *bnpub_key;
DH_get0_key(dh, &bnpub_key, NULL);
return bn2bi(bnpub_key);
}
BigInteger x() const override
{
DH *dh = EVP_PKEY_get0_DH(evp.pkey);
const BIGNUM *bnpriv_key;
DH_get0_key(dh, NULL, &bnpriv_key);
return bn2bi(bnpriv_key);
}
private Q_SLOTS:
void km_finished()
{
DH *dh = keymaker->takeResult();
if(wasBlocking)
delete keymaker;
else
keymaker->deleteLater();
keymaker = 0;
if(dh)
{
evp.pkey = EVP_PKEY_new();
EVP_PKEY_assign_DH(evp.pkey, dh);
sec = true;
}
if(!wasBlocking)
emit finished();
}
};
//----------------------------------------------------------------------------
// QCA-based RSA_METHOD
//----------------------------------------------------------------------------
// only supports EMSA3_Raw for now
class QCA_RSA_METHOD
{
public:
RSAPrivateKey key;
QCA_RSA_METHOD(RSAPrivateKey _key, RSA *rsa)
{
key = _key;
RSA_set_method(rsa, rsa_method());
#ifndef OSSL_110
rsa->flags |= RSA_FLAG_SIGN_VER;
#endif
RSA_set_app_data(rsa, this);
BIGNUM *bnn = bi2bn(_key.n());
BIGNUM *bne = bi2bn(_key.e());
RSA_set0_key(rsa, bnn, bne, NULL);
}
RSA_METHOD *rsa_method()
{
static RSA_METHOD *ops = 0;
if(!ops)
{
ops = RSA_meth_dup(RSA_get_default_method());
RSA_meth_set_priv_enc(ops, NULL); //pkcs11_rsa_encrypt
RSA_meth_set_priv_dec(ops, rsa_priv_dec); //pkcs11_rsa_encrypt
#ifdef OSSL_110
RSA_meth_set_sign(ops, NULL);
#else
RSA_meth_set_sign(ops, rsa_sign);
#endif
RSA_meth_set_verify(ops, NULL); //pkcs11_rsa_verify
RSA_meth_set_finish(ops, rsa_finish);
}
return ops;
}
static int rsa_priv_dec(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding)
{
QCA::EncryptionAlgorithm algo;
if (padding == RSA_PKCS1_PADDING)
{
algo = QCA::EME_PKCS1v15;
}
else if (padding == RSA_PKCS1_OAEP_PADDING)
{
algo = QCA::EME_PKCS1_OAEP;
}
else
{
RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT, RSA_R_UNKNOWN_PADDING_TYPE);
return -1;
}
QCA_RSA_METHOD *self = (QCA_RSA_METHOD *)RSA_get_app_data(rsa);
QCA::SecureArray input;
input.resize(flen);
memcpy(input.data(), from, input.size());
QCA::SecureArray output;
if (self->key.decrypt(input, &output, algo)) {
memcpy(to, output.data(), output.size());
return output.size();
}
// XXX: An error should be set in this case too.
return -1;
}
#ifndef OSSL_110
static int rsa_sign(int type, const unsigned char *m, unsigned int m_len, unsigned char *sigret, unsigned int *siglen, const RSA *rsa)
{
QCA_RSA_METHOD *self = (QCA_RSA_METHOD *)RSA_get_app_data(rsa);
// TODO: this is disgusting
unsigned char *p, *tmps = NULL;
const unsigned char *s = NULL;
int i,j;
j = 0;
if(type == NID_md5_sha1)
{
}
else
{
// make X509 packet
X509_SIG sig;
ASN1_TYPE parameter;
X509_ALGOR algor;
ASN1_OCTET_STRING digest;
int rsa_size = RSA_size(rsa);
//int rsa_size = 128;
//CK_ULONG sigsize = rsa_size;
sig.algor= &algor;
sig.algor->algorithm=OBJ_nid2obj(type);
if (sig.algor->algorithm == NULL)
{
//RSAerr(RSA_F_RSA_SIGN,RSA_R_UNKNOWN_ALGORITHM_TYPE);
return 0;
}
if (sig.algor->algorithm->length == 0)
{
//RSAerr(RSA_F_RSA_SIGN,RSA_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD);
return 0;
}
parameter.type=V_ASN1_NULL;
parameter.value.ptr=NULL;
sig.algor->parameter= &parameter;
sig.digest= &digest;
sig.digest->data=(unsigned char *)m; /* TMP UGLY CAST */
sig.digest->length=m_len;
i=i2d_X509_SIG(&sig,NULL);
j=rsa_size;
if (i > (j-RSA_PKCS1_PADDING_SIZE))
{
//RSAerr(RSA_F_RSA_SIGN,RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY);
return 0;
}
tmps=(unsigned char *)OPENSSL_malloc((unsigned int)j+1);
if (tmps == NULL)
{
//RSAerr(RSA_F_RSA_SIGN,ERR_R_MALLOC_FAILURE);
return 0;
}
p=tmps;
i2d_X509_SIG(&sig,&p);
s=tmps;
m = s;
m_len = i;
}
SecureArray input;
input.resize(m_len);
memcpy(input.data(), m, input.size());
SecureArray result = self->key.signMessage(input, EMSA3_Raw);
if(tmps)
{
OPENSSL_cleanse(tmps,(unsigned int)j+1);
OPENSSL_free(tmps);
}
// TODO: even though we return error here, PKCS7_sign will
// not return error. what gives?
if(result.isEmpty())
return 0;
memcpy(sigret, result.data(), result.size());
*siglen = result.size();
return 1;
}
#endif
static int rsa_finish(RSA *rsa)
{
QCA_RSA_METHOD *self = (QCA_RSA_METHOD *)RSA_get_app_data(rsa);
delete self;
return 1;
}
};
static RSA *createFromExisting(const RSAPrivateKey &key)
{
RSA *r = RSA_new();
new QCA_RSA_METHOD(key, r); // will delete itself on RSA_free
return r;
}
//----------------------------------------------------------------------------
// MyPKeyContext
//----------------------------------------------------------------------------
class MyPKeyContext : public PKeyContext
{
Q_OBJECT
public:
PKeyBase *k;
MyPKeyContext(Provider *p) : PKeyContext(p)
{
k = 0;
}
~MyPKeyContext()
{
delete k;
}
Provider::Context *clone() const override
{
MyPKeyContext *c = new MyPKeyContext(*this);
c->k = (PKeyBase *)k->clone();
return c;
}
QList<PKey::Type> supportedTypes() const override
{
QList<PKey::Type> list;
list += PKey::RSA;
list += PKey::DSA;
list += PKey::DH;
return list;
}
QList<PKey::Type> supportedIOTypes() const override
{
QList<PKey::Type> list;
list += PKey::RSA;
list += PKey::DSA;
return list;
}
QList<PBEAlgorithm> supportedPBEAlgorithms() const override
{
QList<PBEAlgorithm> list;
list += PBES2_DES_SHA1;
list += PBES2_TripleDES_SHA1;
return list;
}
PKeyBase *key() override
{
return k;
}
const PKeyBase *key() const override
{
return k;
}
void setKey(PKeyBase *key) override
{
k = key;
}
bool importKey(const PKeyBase *key) override
{
Q_UNUSED(key);
return false;
}
EVP_PKEY *get_pkey() const
{
PKey::Type t = k->type();
if(t == PKey::RSA)
return static_cast<RSAKey *>(k)->evp.pkey;
else if(t == PKey::DSA)
return static_cast<DSAKey *>(k)->evp.pkey;
else
return static_cast<DHKey *>(k)->evp.pkey;
}
PKeyBase *pkeyToBase(EVP_PKEY *pkey, bool sec) const
{
PKeyBase *nk = 0;
int pkey_type = EVP_PKEY_type(EVP_PKEY_id(pkey));
if(pkey_type == EVP_PKEY_RSA)
{
RSAKey *c = new RSAKey(provider());
c->evp.pkey = pkey;
c->sec = sec;
nk = c;
}
else if(pkey_type == EVP_PKEY_DSA)
{
DSAKey *c = new DSAKey(provider());
c->evp.pkey = pkey;
c->sec = sec;
nk = c;
}
else if(pkey_type == EVP_PKEY_DH)
{
DHKey *c = new DHKey(provider());
c->evp.pkey = pkey;
c->sec = sec;
nk = c;
}
else
{
EVP_PKEY_free(pkey);
}
return nk;
}
QByteArray publicToDER() const override
{
EVP_PKEY *pkey = get_pkey();
int pkey_type = EVP_PKEY_type(EVP_PKEY_id(pkey));
// OpenSSL does not have DH import/export support
if(pkey_type == EVP_PKEY_DH)
return QByteArray();
BIO *bo = BIO_new(BIO_s_mem());
i2d_PUBKEY_bio(bo, pkey);
QByteArray buf = bio2ba(bo);
return buf;
}
QString publicToPEM() const override
{
EVP_PKEY *pkey = get_pkey();
int pkey_type = EVP_PKEY_type(EVP_PKEY_id(pkey));
// OpenSSL does not have DH import/export support
if(pkey_type == EVP_PKEY_DH)
return QString();
BIO *bo = BIO_new(BIO_s_mem());
PEM_write_bio_PUBKEY(bo, pkey);
QByteArray buf = bio2ba(bo);
return QString::fromLatin1(buf);
}
ConvertResult publicFromDER(const QByteArray &in) override
{
delete k;
k = 0;
BIO *bi = BIO_new(BIO_s_mem());
BIO_write(bi, in.data(), in.size());
EVP_PKEY *pkey = d2i_PUBKEY_bio(bi, NULL);
BIO_free(bi);
if(!pkey)
return ErrorDecode;
k = pkeyToBase(pkey, false);
if(k)
return ConvertGood;
else
return ErrorDecode;
}
ConvertResult publicFromPEM(const QString &s) override
{
delete k;
k = 0;
QByteArray in = s.toLatin1();
BIO *bi = BIO_new(BIO_s_mem());
BIO_write(bi, in.data(), in.size());
EVP_PKEY *pkey = PEM_read_bio_PUBKEY(bi, NULL, passphrase_cb, NULL);
BIO_free(bi);
if(!pkey)
return ErrorDecode;
k = pkeyToBase(pkey, false);
if(k)
return ConvertGood;
else
return ErrorDecode;
}
SecureArray privateToDER(const SecureArray &passphrase, PBEAlgorithm pbe) const override
{
//if(pbe == PBEDefault)
// pbe = PBES2_TripleDES_SHA1;
const EVP_CIPHER *cipher = 0;
if(pbe == PBES2_TripleDES_SHA1)
cipher = EVP_des_ede3_cbc();
else if(pbe == PBES2_DES_SHA1)
cipher = EVP_des_cbc();
if(!cipher)
return SecureArray();
EVP_PKEY *pkey = get_pkey();
int pkey_type = EVP_PKEY_type(EVP_PKEY_id(pkey));
// OpenSSL does not have DH import/export support
if(pkey_type == EVP_PKEY_DH)
return SecureArray();
BIO *bo = BIO_new(BIO_s_mem());
if(!passphrase.isEmpty())
i2d_PKCS8PrivateKey_bio(bo, pkey, cipher, NULL, 0, NULL, (void *)passphrase.data());
else
i2d_PKCS8PrivateKey_bio(bo, pkey, NULL, NULL, 0, NULL, NULL);
SecureArray buf = bio2buf(bo);
return buf;
}
QString privateToPEM(const SecureArray &passphrase, PBEAlgorithm pbe) const override
{
//if(pbe == PBEDefault)
// pbe = PBES2_TripleDES_SHA1;
const EVP_CIPHER *cipher = 0;
if(pbe == PBES2_TripleDES_SHA1)
cipher = EVP_des_ede3_cbc();
else if(pbe == PBES2_DES_SHA1)
cipher = EVP_des_cbc();
if(!cipher)
return QString();
EVP_PKEY *pkey = get_pkey();
int pkey_type = EVP_PKEY_type(EVP_PKEY_id(pkey));
// OpenSSL does not have DH import/export support
if(pkey_type == EVP_PKEY_DH)
return QString();
BIO *bo = BIO_new(BIO_s_mem());
if(!passphrase.isEmpty())
PEM_write_bio_PKCS8PrivateKey(bo, pkey, cipher, NULL, 0, NULL, (void *)passphrase.data());
else
PEM_write_bio_PKCS8PrivateKey(bo, pkey, NULL, NULL, 0, NULL, NULL);
SecureArray buf = bio2buf(bo);
return QString::fromLatin1(buf.toByteArray());
}
ConvertResult privateFromDER(const SecureArray &in, const SecureArray &passphrase) override
{
delete k;
k = 0;
EVP_PKEY *pkey;
if(!passphrase.isEmpty())
pkey = qca_d2i_PKCS8PrivateKey(in, NULL, NULL, (void *)passphrase.data());
else
pkey = qca_d2i_PKCS8PrivateKey(in, NULL, passphrase_cb, NULL);
if(!pkey)
return ErrorDecode;
k = pkeyToBase(pkey, true);
if(k)
return ConvertGood;
else
return ErrorDecode;
}
ConvertResult privateFromPEM(const QString &s, const SecureArray &passphrase) override
{
delete k;
k = 0;
QByteArray in = s.toLatin1();
BIO *bi = BIO_new(BIO_s_mem());
BIO_write(bi, in.data(), in.size());
EVP_PKEY *pkey;
if(!passphrase.isEmpty())
pkey = PEM_read_bio_PrivateKey(bi, NULL, NULL, (void *)passphrase.data());
else
pkey = PEM_read_bio_PrivateKey(bi, NULL, passphrase_cb, NULL);
BIO_free(bi);
if(!pkey)
return ErrorDecode;
k = pkeyToBase(pkey, true);
if(k)
return ConvertGood;
else
return ErrorDecode;
}
};
//----------------------------------------------------------------------------
// MyCertContext
//----------------------------------------------------------------------------
class X509Item
{
public:
X509 *cert;
X509_REQ *req;
X509_CRL *crl;
enum Type { TypeCert, TypeReq, TypeCRL };
X509Item()
{
cert = 0;
req = 0;
crl = 0;
}
X509Item(const X509Item &from)
{
cert = 0;
req = 0;
crl = 0;
*this = from;
}
~X509Item()
{
reset();
}
X509Item & operator=(const X509Item &from)
{
if(this != &from)
{
reset();
cert = from.cert;
req = from.req;
crl = from.crl;
if(cert)
X509_up_ref(cert);
if(req)
{
#ifdef OSSL_110
// Not exposed, so copy
req = X509_REQ_dup(req);
#else
CRYPTO_add(&req->references, 1, CRYPTO_LOCK_X509_REQ);
#endif
}
if(crl)
X509_CRL_up_ref(crl);
}
return *this;
}
void reset()
{
if(cert)
{
X509_free(cert);
cert = 0;
}
if(req)
{
X509_REQ_free(req);
req = 0;
}
if(crl)
{
X509_CRL_free(crl);
crl = 0;
}
}
bool isNull() const
{
return (!cert && !req && !crl);
}
QByteArray toDER() const
{
BIO *bo = BIO_new(BIO_s_mem());
if(cert)
i2d_X509_bio(bo, cert);
else if(req)
i2d_X509_REQ_bio(bo, req);
else if(crl)
i2d_X509_CRL_bio(bo, crl);
QByteArray buf = bio2ba(bo);
return buf;
}
QString toPEM() const
{
BIO *bo = BIO_new(BIO_s_mem());
if(cert)
PEM_write_bio_X509(bo, cert);
else if(req)
PEM_write_bio_X509_REQ(bo, req);
else if(crl)
PEM_write_bio_X509_CRL(bo, crl);
QByteArray buf = bio2ba(bo);
return QString::fromLatin1(buf);
}
ConvertResult fromDER(const QByteArray &in, Type t)
{
reset();
BIO *bi = BIO_new(BIO_s_mem());
BIO_write(bi, in.data(), in.size());
if(t == TypeCert)
cert = d2i_X509_bio(bi, NULL);
else if(t == TypeReq)
req = d2i_X509_REQ_bio(bi, NULL);
else if(t == TypeCRL)
crl = d2i_X509_CRL_bio(bi, NULL);
BIO_free(bi);
if(isNull())
return ErrorDecode;
return ConvertGood;
}
ConvertResult fromPEM(const QString &s, Type t)
{
reset();
QByteArray in = s.toLatin1();
BIO *bi = BIO_new(BIO_s_mem());
BIO_write(bi, in.data(), in.size());
if(t == TypeCert)
cert = PEM_read_bio_X509(bi, NULL, passphrase_cb, NULL);
else if(t == TypeReq)
req = PEM_read_bio_X509_REQ(bi, NULL, passphrase_cb, NULL);
else if(t == TypeCRL)
crl = PEM_read_bio_X509_CRL(bi, NULL, passphrase_cb, NULL);
BIO_free(bi);
if(isNull())
return ErrorDecode;
return ConvertGood;
}
};
// (taken from kdelibs) -- Justin
//
// This code is mostly taken from OpenSSL v0.9.5a
// by Eric Young
QDateTime ASN1_UTCTIME_QDateTime(const ASN1_UTCTIME *tm, int *isGmt)
{
QDateTime qdt;
char *v;
int gmt=0;
int i;
int y=0,M=0,d=0,h=0,m=0,s=0;
QDate qdate;
QTime qtime;
i = tm->length;
v = (char *)tm->data;
if (i < 10) goto auq_err;
if (v[i-1] == 'Z') gmt=1;
for (i=0; i<10; i++)
if ((v[i] > '9') || (v[i] < '0')) goto auq_err;
y = (v[0]-'0')*10+(v[1]-'0');
if (y < 50) y+=100;
M = (v[2]-'0')*10+(v[3]-'0');
if ((M > 12) || (M < 1)) goto auq_err;
d = (v[4]-'0')*10+(v[5]-'0');
h = (v[6]-'0')*10+(v[7]-'0');
m = (v[8]-'0')*10+(v[9]-'0');
if ( (v[10] >= '0') && (v[10] <= '9') &&
(v[11] >= '0') && (v[11] <= '9'))
s = (v[10]-'0')*10+(v[11]-'0');
// localize the date and display it.
qdate.setDate(y+1900, M, d);
qtime.setHMS(h,m,s);
qdt.setDate(qdate); qdt.setTime(qtime);
if (gmt) qdt.setTimeSpec(Qt::UTC);
auq_err:
if (isGmt) *isGmt = gmt;
return qdt;
}
class MyCertContext;
static bool sameChain(STACK_OF(X509) *ossl, const QList<const MyCertContext*> &qca);
// TODO: support read/write of multiple info values with the same name
class MyCertContext : public CertContext
{
Q_OBJECT
public:
X509Item item;
CertContextProps _props;
MyCertContext(Provider *p) : CertContext(p)
{
//printf("[%p] ** created\n", this);
}
MyCertContext(const MyCertContext &from) : CertContext(from), item(from.item), _props(from._props)
{
//printf("[%p] ** created as copy (from [%p])\n", this, &from);
}
~MyCertContext()
{
//printf("[%p] ** deleted\n", this);
}
Provider::Context *clone() const override
{
return new MyCertContext(*this);
}
QByteArray toDER() const override
{
return item.toDER();
}
QString toPEM() const override
{
return item.toPEM();
}
ConvertResult fromDER(const QByteArray &a) override
{
_props = CertContextProps();
ConvertResult r = item.fromDER(a, X509Item::TypeCert);
if(r == ConvertGood)
make_props();
return r;
}
ConvertResult fromPEM(const QString &s) override
{
_props = CertContextProps();
ConvertResult r = item.fromPEM(s, X509Item::TypeCert);
if(r == ConvertGood)
make_props();
return r;
}
void fromX509(X509 *x)
{
X509_up_ref(x);
item.cert = x;
make_props();
}
bool createSelfSigned(const CertificateOptions &opts, const PKeyContext &priv) override
{
_props = CertContextProps();
item.reset();
CertificateInfo info = opts.info();
// Note: removing default constraints, let the app choose these if it wants
Constraints constraints = opts.constraints();
// constraints - logic from Botan
/*Constraints constraints;
if(opts.isCA())
{
constraints += KeyCertificateSign;
constraints += CRLSign;
}
else
constraints = find_constraints(priv, opts.constraints());*/
EVP_PKEY *pk = static_cast<const MyPKeyContext *>(&priv)->get_pkey();
X509_EXTENSION *ex;
const EVP_MD *md;
if(priv.key()->type() == PKey::RSA)
md = EVP_sha1();
else if(priv.key()->type() == PKey::DSA)
md = EVP_sha1();
else
return false;
// create
X509 *x = X509_new();
X509_set_version(x, 2);
// serial
BIGNUM *bn = bi2bn(opts.serialNumber());
BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(x));
BN_free(bn);
// validity period
ASN1_TIME_set(X509_get_notBefore(x), opts.notValidBefore().toTime_t());
ASN1_TIME_set(X509_get_notAfter(x), opts.notValidAfter().toTime_t());
// public key
X509_set_pubkey(x, pk);
// subject
X509_NAME *name = new_cert_name(info);
X509_set_subject_name(x, name);
// issuer == subject
X509_set_issuer_name(x, name);
// subject key id
ex = new_subject_key_id(x);
{
X509_add_ext(x, ex, -1);
X509_EXTENSION_free(ex);
}
// CA mode
ex = new_basic_constraints(opts.isCA(), opts.pathLimit());
if(ex)
{
X509_add_ext(x, ex, -1);
X509_EXTENSION_free(ex);
}
// subject alt name
ex = new_cert_subject_alt_name(info);
if(ex)
{
X509_add_ext(x, ex, -1);
X509_EXTENSION_free(ex);
}
// key usage
ex = new_cert_key_usage(constraints);
if(ex)
{
X509_add_ext(x, ex, -1);
X509_EXTENSION_free(ex);
}
// extended key usage
ex = new_cert_ext_key_usage(constraints);
if(ex)
{
X509_add_ext(x, ex, -1);
X509_EXTENSION_free(ex);
}
// policies
ex = new_cert_policies(opts.policies());
if(ex)
{
X509_add_ext(x, ex, -1);
X509_EXTENSION_free(ex);
}
// finished
X509_sign(x, pk, md);
item.cert = x;
make_props();
return true;
}
const CertContextProps *props() const override
{
//printf("[%p] grabbing props\n", this);
return &_props;
}
bool compare(const CertContext *other) const override
{
const CertContextProps *a = &_props;
const CertContextProps *b = other->props();
PublicKey akey, bkey;
PKeyContext *ac = subjectPublicKey();
akey.change(ac);
PKeyContext *bc = other->subjectPublicKey();
bkey.change(bc);
// logic from Botan
if(a->sig != b->sig || a->sigalgo != b->sigalgo || akey != bkey)
return false;
if(a->issuer != b->issuer || a->subject != b->subject)
return false;
if(a->serial != b->serial || a->version != b->version)
return false;
if(a->start != b->start || a->end != b->end)
return false;
return true;
}
// does a new
PKeyContext *subjectPublicKey() const override
{
MyPKeyContext *kc = new MyPKeyContext(provider());
EVP_PKEY *pkey = X509_get_pubkey(item.cert);
PKeyBase *kb = kc->pkeyToBase(pkey, false);
kc->setKey(kb);
return kc;
}
bool isIssuerOf(const CertContext *other) const override
{
// to check a single issuer, we make a list of 1
STACK_OF(X509) *untrusted_list = sk_X509_new_null();
const MyCertContext *our_cc = this;
X509 *x = our_cc->item.cert;
X509_up_ref(x);
sk_X509_push(untrusted_list, x);
const MyCertContext *other_cc = static_cast<const MyCertContext *>(other);
X509 *ox = other_cc->item.cert;
X509_STORE *store = X509_STORE_new();
X509_STORE_CTX *ctx = X509_STORE_CTX_new();
X509_STORE_CTX_init(ctx, store, ox, untrusted_list);
// we don't care about the verify result here
X509_verify_cert(ctx);
// grab the chain, which may not be fully populated
STACK_OF(X509) *chain = X509_STORE_CTX_get_chain(ctx);
bool ok = false;
// chain should be exactly 2 items
QList<const MyCertContext*> expected;
expected += other_cc;
expected += our_cc;
if(chain && sameChain(chain, expected))
ok = true;
// cleanup
X509_STORE_CTX_free(ctx);
X509_STORE_free(store);
sk_X509_pop_free(untrusted_list, X509_free);
return ok;
}
// implemented later because it depends on MyCRLContext
Validity validate(const QList<CertContext*> &trusted, const QList<CertContext*> &untrusted, const QList<CRLContext *> &crls, UsageMode u, ValidateFlags vf) const override;
Validity validate_chain(const QList<CertContext*> &chain, const QList<CertContext*> &trusted, const QList<CRLContext *> &crls, UsageMode u, ValidateFlags vf) const override;
void make_props()
{
X509 *x = item.cert;
CertContextProps p;
p.version = X509_get_version(x);
ASN1_INTEGER *ai = X509_get_serialNumber(x);
if(ai)
{
char *rep = i2s_ASN1_INTEGER(NULL, ai);
QString str = rep;
OPENSSL_free(rep);
p.serial.fromString(str);
}
p.start = ASN1_UTCTIME_QDateTime(X509_get_notBefore(x), NULL);
p.end = ASN1_UTCTIME_QDateTime(X509_get_notAfter(x), NULL);
CertificateInfo subject, issuer;
subject = get_cert_name(X509_get_subject_name(x));
issuer = get_cert_name(X509_get_issuer_name(x));
p.isSelfSigned = ( X509_V_OK == X509_check_issued( x, x ) );
p.isCA = false;
p.pathLimit = 0;
int pos = X509_get_ext_by_NID(x, NID_basic_constraints, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509_get_ext(x, pos);
if(ex)
get_basic_constraints(ex, &p.isCA, &p.pathLimit);
}
pos = X509_get_ext_by_NID(x, NID_subject_alt_name, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509_get_ext(x, pos);
if(ex)
subject.unite(get_cert_alt_name(ex));
}
pos = X509_get_ext_by_NID(x, NID_issuer_alt_name, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509_get_ext(x, pos);
if(ex)
issuer.unite(get_cert_alt_name(ex));
}
pos = X509_get_ext_by_NID(x, NID_key_usage, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509_get_ext(x, pos);
if(ex)
p.constraints = get_cert_key_usage(ex);
}
pos = X509_get_ext_by_NID(x, NID_ext_key_usage, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509_get_ext(x, pos);
if(ex)
p.constraints += get_cert_ext_key_usage(ex);
}
pos = X509_get_ext_by_NID(x, NID_certificate_policies, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509_get_ext(x, pos);
if(ex)
p.policies = get_cert_policies(ex);
}
#ifdef OSSL_110
const
#endif
ASN1_BIT_STRING *signature;
X509_get0_signature(&signature, NULL, x);
if(signature)
{
p.sig = QByteArray(signature->length, 0);
for (int i=0; i< signature->length; i++)
p.sig[i] = signature->data[i];
}
switch( X509_get_signature_nid(x) )
{
case NID_sha1WithRSAEncryption:
p.sigalgo = QCA::EMSA3_SHA1;
break;
case NID_md5WithRSAEncryption:
p.sigalgo = QCA::EMSA3_MD5;
break;
#ifdef HAVE_OPENSSL_MD2
case NID_md2WithRSAEncryption:
p.sigalgo = QCA::EMSA3_MD2;
break;
#endif
case NID_ripemd160WithRSA:
p.sigalgo = QCA::EMSA3_RIPEMD160;
break;
case NID_dsaWithSHA1:
p.sigalgo = QCA::EMSA1_SHA1;
break;
case NID_sha224WithRSAEncryption:
p.sigalgo = QCA::EMSA3_SHA224;
break;
case NID_sha256WithRSAEncryption:
p.sigalgo = QCA::EMSA3_SHA256;
break;
case NID_sha384WithRSAEncryption:
p.sigalgo = QCA::EMSA3_SHA384;
break;
case NID_sha512WithRSAEncryption:
p.sigalgo = QCA::EMSA3_SHA512;
break;
default:
qDebug() << "Unknown signature value: " << X509_get_signature_nid(x);
p.sigalgo = QCA::SignatureUnknown;
}
pos = X509_get_ext_by_NID(x, NID_subject_key_identifier, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509_get_ext(x, pos);
if(ex)
p.subjectId += get_cert_subject_key_id(ex);
}
pos = X509_get_ext_by_NID(x, NID_authority_key_identifier, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509_get_ext(x, pos);
if(ex)
p.issuerId += get_cert_issuer_key_id(ex);
}
// FIXME: super hack
CertificateOptions opts;
opts.setInfo(subject);
p.subject = opts.infoOrdered();
opts.setInfo(issuer);
p.issuer = opts.infoOrdered();
_props = p;
//printf("[%p] made props: [%s]\n", this, _props.subject[CommonName].toLatin1().data());
}
};
bool sameChain(STACK_OF(X509) *ossl, const QList<const MyCertContext*> &qca)
{
if(sk_X509_num(ossl) != qca.count())
return false;
for(int n = 0; n < sk_X509_num(ossl); ++n)
{
X509 *a = sk_X509_value(ossl, n);
X509 *b = qca[n]->item.cert;
if(X509_cmp(a, b) != 0)
return false;
}
return true;
}
//----------------------------------------------------------------------------
// MyCAContext
//----------------------------------------------------------------------------
// Thanks to Pascal Patry
class MyCAContext : public CAContext
{
Q_OBJECT
public:
X509Item caCert;
MyPKeyContext *privateKey;
MyCAContext(Provider *p) : CAContext(p)
{
privateKey = 0;
}
MyCAContext(const MyCAContext &from) : CAContext(from), caCert(from.caCert)
{
privateKey = static_cast<MyPKeyContext*>(from.privateKey -> clone());
}
~MyCAContext()
{
delete privateKey;
}
CertContext *certificate() const override
{
MyCertContext *cert = new MyCertContext(provider());
cert->fromX509(caCert.cert);
return cert;
}
CertContext *createCertificate(const PKeyContext &pub, const CertificateOptions &opts) const override
{
// TODO: implement
Q_UNUSED(pub)
Q_UNUSED(opts)
return 0;
}
CRLContext *createCRL(const QDateTime &nextUpdate) const override
{
// TODO: implement
Q_UNUSED(nextUpdate)
return 0;
}
void setup(const CertContext &cert, const PKeyContext &priv) override
{
caCert = static_cast<const MyCertContext&>(cert).item;
delete privateKey;
privateKey = 0;
privateKey = static_cast<MyPKeyContext*>(priv.clone());
}
CertContext *signRequest(const CSRContext &req, const QDateTime &notValidAfter) const override
{
MyCertContext *cert = 0;
const EVP_MD *md = 0;
X509 *x = 0;
const CertContextProps &props = *req.props();
CertificateOptions subjectOpts;
X509_NAME *subjectName = 0;
X509_EXTENSION *ex = 0;
if(privateKey -> key()->type() == PKey::RSA)
md = EVP_sha1();
else if(privateKey -> key()->type() == PKey::DSA)
md = EVP_sha1();
else
return 0;
cert = new MyCertContext(provider());
subjectOpts.setInfoOrdered(props.subject);
subjectName = new_cert_name(subjectOpts.info());
// create
x = X509_new();
X509_set_version(x, 2);
// serial
BIGNUM *bn = bi2bn(props.serial);
BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(x));
BN_free(bn);
// validity period
ASN1_TIME_set(X509_get_notBefore(x), QDateTime::currentDateTime().toUTC().toTime_t());
ASN1_TIME_set(X509_get_notAfter(x), notValidAfter.toTime_t());
X509_set_pubkey(x, static_cast<const MyPKeyContext*>(req.subjectPublicKey()) -> get_pkey());
X509_set_subject_name(x, subjectName);
X509_set_issuer_name(x, X509_get_subject_name(caCert.cert));
// subject key id
ex = new_subject_key_id(x);
{
X509_add_ext(x, ex, -1);
X509_EXTENSION_free(ex);
}
// CA mode
ex = new_basic_constraints(props.isCA, props.pathLimit);
if(ex)
{
X509_add_ext(x, ex, -1);
X509_EXTENSION_free(ex);
}
// subject alt name
ex = new_cert_subject_alt_name(subjectOpts.info());
if(ex)
{
X509_add_ext(x, ex, -1);
X509_EXTENSION_free(ex);
}
// key usage
ex = new_cert_key_usage(props.constraints);
if(ex)
{
X509_add_ext(x, ex, -1);
X509_EXTENSION_free(ex);
}
// extended key usage
ex = new_cert_ext_key_usage(props.constraints);
if(ex)
{
X509_add_ext(x, ex, -1);
X509_EXTENSION_free(ex);
}
// policies
ex = new_cert_policies(props.policies);
if(ex)
{
X509_add_ext(x, ex, -1);
X509_EXTENSION_free(ex);
}
if(!X509_sign(x, privateKey->get_pkey(), md))
{
X509_free(x);
delete cert;
return 0;
}
cert->fromX509(x);
X509_free(x);
return cert;
}
CRLContext *updateCRL(const CRLContext &crl, const QList<CRLEntry> &entries, const QDateTime &nextUpdate) const override
{
// TODO: implement
Q_UNUSED(crl)
Q_UNUSED(entries)
Q_UNUSED(nextUpdate)
return 0;
}
Provider::Context *clone() const override
{
return new MyCAContext(*this);
}
};
//----------------------------------------------------------------------------
// MyCSRContext
//----------------------------------------------------------------------------
class MyCSRContext : public CSRContext
{
Q_OBJECT
public:
X509Item item;
CertContextProps _props;
MyCSRContext(Provider *p) : CSRContext(p)
{
}
MyCSRContext(const MyCSRContext &from) : CSRContext(from), item(from.item), _props(from._props)
{
}
Provider::Context *clone() const override
{
return new MyCSRContext(*this);
}
QByteArray toDER() const override
{
return item.toDER();
}
QString toPEM() const override
{
return item.toPEM();
}
ConvertResult fromDER(const QByteArray &a) override
{
_props = CertContextProps();
ConvertResult r = item.fromDER(a, X509Item::TypeReq);
if(r == ConvertGood)
make_props();
return r;
}
ConvertResult fromPEM(const QString &s) override
{
_props = CertContextProps();
ConvertResult r = item.fromPEM(s, X509Item::TypeReq);
if(r == ConvertGood)
make_props();
return r;
}
bool canUseFormat(CertificateRequestFormat f) const override
{
if(f == PKCS10)
return true;
return false;
}
bool createRequest(const CertificateOptions &opts, const PKeyContext &priv) override
{
_props = CertContextProps();
item.reset();
CertificateInfo info = opts.info();
// Note: removing default constraints, let the app choose these if it wants
Constraints constraints = opts.constraints();
// constraints - logic from Botan
/*Constraints constraints;
if(opts.isCA())
{
constraints += KeyCertificateSign;
constraints += CRLSign;
}
else
constraints = find_constraints(priv, opts.constraints());*/
EVP_PKEY *pk = static_cast<const MyPKeyContext *>(&priv)->get_pkey();
X509_EXTENSION *ex;
const EVP_MD *md;
if(priv.key()->type() == PKey::RSA)
md = EVP_sha1();
else if(priv.key()->type() == PKey::DSA)
md = EVP_sha1();
else
return false;
// create
X509_REQ *x = X509_REQ_new();
// public key
X509_REQ_set_pubkey(x, pk);
// subject
X509_NAME *name = new_cert_name(info);
X509_REQ_set_subject_name(x, name);
// challenge
QByteArray cs = opts.challenge().toLatin1();
if(!cs.isEmpty())
X509_REQ_add1_attr_by_NID(x, NID_pkcs9_challengePassword, MBSTRING_UTF8, (const unsigned char *)cs.data(), -1);
STACK_OF(X509_EXTENSION) *exts = sk_X509_EXTENSION_new_null();
// CA mode
ex = new_basic_constraints(opts.isCA(), opts.pathLimit());
if(ex)
sk_X509_EXTENSION_push(exts, ex);
// subject alt name
ex = new_cert_subject_alt_name(info);
if(ex)
sk_X509_EXTENSION_push(exts, ex);
// key usage
ex = new_cert_key_usage(constraints);
if(ex)
sk_X509_EXTENSION_push(exts, ex);
// extended key usage
ex = new_cert_ext_key_usage(constraints);
if(ex)
sk_X509_EXTENSION_push(exts, ex);
// policies
ex = new_cert_policies(opts.policies());
if(ex)
sk_X509_EXTENSION_push(exts, ex);
if(sk_X509_EXTENSION_num(exts) > 0)
X509_REQ_add_extensions(x, exts);
sk_X509_EXTENSION_pop_free(exts, X509_EXTENSION_free);
// finished
X509_REQ_sign(x, pk, md);
item.req = x;
make_props();
return true;
}
const CertContextProps *props() const override
{
return &_props;
}
bool compare(const CSRContext *other) const override
{
const CertContextProps *a = &_props;
const CertContextProps *b = other->props();
PublicKey akey, bkey;
PKeyContext *ac = subjectPublicKey();
akey.change(ac);
PKeyContext *bc = other->subjectPublicKey();
bkey.change(bc);
if(a->sig != b->sig || a->sigalgo != b->sigalgo || akey != bkey)
return false;
// TODO: Anything else we should compare?
return true;
}
PKeyContext *subjectPublicKey() const override // does a new
{
MyPKeyContext *kc = new MyPKeyContext(provider());
EVP_PKEY *pkey = X509_REQ_get_pubkey(item.req);
PKeyBase *kb = kc->pkeyToBase(pkey, false);
kc->setKey(kb);
return kc;
}
QString toSPKAC() const override
{
return QString();
}
ConvertResult fromSPKAC(const QString &s) override
{
Q_UNUSED(s);
return ErrorDecode;
}
void make_props()
{
X509_REQ *x = item.req;
CertContextProps p;
// TODO: QString challenge;
p.format = PKCS10;
CertificateInfo subject;
subject = get_cert_name(X509_REQ_get_subject_name(x));
STACK_OF(X509_EXTENSION) *exts = X509_REQ_get_extensions(x);
p.isCA = false;
p.pathLimit = 0;
int pos = X509v3_get_ext_by_NID(exts, NID_basic_constraints, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509v3_get_ext(exts, pos);
if(ex)
get_basic_constraints(ex, &p.isCA, &p.pathLimit);
}
pos = X509v3_get_ext_by_NID(exts, NID_subject_alt_name, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509v3_get_ext(exts, pos);
if(ex)
subject.unite(get_cert_alt_name(ex));
}
pos = X509v3_get_ext_by_NID(exts, NID_key_usage, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509v3_get_ext(exts, pos);
if(ex)
p.constraints = get_cert_key_usage(ex);
}
pos = X509v3_get_ext_by_NID(exts, NID_ext_key_usage, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509v3_get_ext(exts, pos);
if(ex)
p.constraints += get_cert_ext_key_usage(ex);
}
pos = X509v3_get_ext_by_NID(exts, NID_certificate_policies, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509v3_get_ext(exts, pos);
if(ex)
p.policies = get_cert_policies(ex);
}
sk_X509_EXTENSION_pop_free(exts, X509_EXTENSION_free);
const ASN1_BIT_STRING *signature;
X509_REQ_get0_signature(x, &signature, NULL);
if(signature)
{
p.sig = QByteArray(signature->length, 0);
for (int i=0; i< signature->length; i++)
p.sig[i] = signature->data[i];
}
switch( X509_REQ_get_signature_nid(x) )
{
case NID_sha1WithRSAEncryption:
p.sigalgo = QCA::EMSA3_SHA1;
break;
case NID_md5WithRSAEncryption:
p.sigalgo = QCA::EMSA3_MD5;
break;
#ifdef HAVE_OPENSSL_MD2
case NID_md2WithRSAEncryption:
p.sigalgo = QCA::EMSA3_MD2;
break;
#endif
case NID_ripemd160WithRSA:
p.sigalgo = QCA::EMSA3_RIPEMD160;
break;
case NID_dsaWithSHA1:
p.sigalgo = QCA::EMSA1_SHA1;
break;
default:
qDebug() << "Unknown signature value: " << X509_REQ_get_signature_nid(x);
p.sigalgo = QCA::SignatureUnknown;
}
// FIXME: super hack
CertificateOptions opts;
opts.setInfo(subject);
p.subject = opts.infoOrdered();
_props = p;
}
};
//----------------------------------------------------------------------------
// MyCRLContext
//----------------------------------------------------------------------------
class MyCRLContext : public CRLContext
{
Q_OBJECT
public:
X509Item item;
CRLContextProps _props;
MyCRLContext(Provider *p) : CRLContext(p)
{
}
MyCRLContext(const MyCRLContext &from) : CRLContext(from), item(from.item)
{
}
Provider::Context *clone() const override
{
return new MyCRLContext(*this);
}
QByteArray toDER() const override
{
return item.toDER();
}
QString toPEM() const override
{
return item.toPEM();
}
ConvertResult fromDER(const QByteArray &a) override
{
_props = CRLContextProps();
ConvertResult r = item.fromDER(a, X509Item::TypeCRL);
if(r == ConvertGood)
make_props();
return r;
}
ConvertResult fromPEM(const QString &s) override
{
ConvertResult r = item.fromPEM(s, X509Item::TypeCRL);
if(r == ConvertGood)
make_props();
return r;
}
void fromX509(X509_CRL *x)
{
X509_CRL_up_ref(x);
item.crl = x;
make_props();
}
const CRLContextProps *props() const override
{
return &_props;
}
bool compare(const CRLContext *other) const override
{
const CRLContextProps *a = &_props;
const CRLContextProps *b = other->props();
if(a->issuer != b->issuer)
return false;
if(a->number != b->number)
return false;
if(a->thisUpdate != b->thisUpdate)
return false;
if(a->nextUpdate != b->nextUpdate)
return false;
if(a->revoked != b->revoked)
return false;
if(a->sig != b->sig)
return false;
if(a->sigalgo != b->sigalgo)
return false;
if(a->issuerId != b->issuerId)
return false;
return true;
}
void make_props()
{
X509_CRL *x = item.crl;
CRLContextProps p;
CertificateInfo issuer;
issuer = get_cert_name(X509_CRL_get_issuer(x));
p.thisUpdate = ASN1_UTCTIME_QDateTime(X509_CRL_get0_lastUpdate(x), NULL);
p.nextUpdate = ASN1_UTCTIME_QDateTime(X509_CRL_get0_nextUpdate(x), NULL);
STACK_OF(X509_REVOKED)* revokeStack = X509_CRL_get_REVOKED(x);
for (int i = 0; i < sk_X509_REVOKED_num(revokeStack); ++i) {
X509_REVOKED *rev = sk_X509_REVOKED_value(revokeStack, i);
BigInteger serial = bn2bi(ASN1_INTEGER_to_BN(X509_REVOKED_get0_serialNumber(rev), NULL));
QDateTime time = ASN1_UTCTIME_QDateTime( X509_REVOKED_get0_revocationDate(rev), NULL);
QCA::CRLEntry::Reason reason = QCA::CRLEntry::Unspecified;
int pos = X509_REVOKED_get_ext_by_NID(rev, NID_crl_reason, -1);
if (pos != -1) {
X509_EXTENSION *ex = X509_REVOKED_get_ext(rev, pos);
if(ex) {
int *result = (int*) X509V3_EXT_d2i(ex);
switch (*result) {
case 0:
reason = QCA::CRLEntry::Unspecified;
break;
case 1:
reason = QCA::CRLEntry::KeyCompromise;
break;
case 2:
reason = QCA::CRLEntry::CACompromise;
break;
case 3:
reason = QCA::CRLEntry::AffiliationChanged;
break;
case 4:
reason = QCA::CRLEntry::Superseded;
break;
case 5:
reason = QCA::CRLEntry::CessationOfOperation;
break;
case 6:
reason = QCA::CRLEntry::CertificateHold;
break;
case 8:
reason = QCA::CRLEntry::RemoveFromCRL;
break;
case 9:
reason = QCA::CRLEntry::PrivilegeWithdrawn;
break;
case 10:
reason = QCA::CRLEntry::AACompromise;
break;
default:
reason = QCA::CRLEntry::Unspecified;
break;
}
ASN1_INTEGER_free((ASN1_INTEGER*)result);
}
}
CRLEntry thisEntry( serial, time, reason);
p.revoked.append(thisEntry);
}
const ASN1_BIT_STRING *signature;
X509_CRL_get0_signature(x, &signature, NULL);
if(signature)
{
p.sig = QByteArray(signature->length, 0);
for (int i=0; i< signature->length; i++)
p.sig[i] = signature->data[i];
}
switch( X509_CRL_get_signature_nid(x) )
{
case NID_sha1WithRSAEncryption:
p.sigalgo = QCA::EMSA3_SHA1;
break;
case NID_md5WithRSAEncryption:
p.sigalgo = QCA::EMSA3_MD5;
break;
#ifdef HAVE_OPENSSL_MD2
case NID_md2WithRSAEncryption:
p.sigalgo = QCA::EMSA3_MD2;
break;
#endif
case NID_ripemd160WithRSA:
p.sigalgo = QCA::EMSA3_RIPEMD160;
break;
case NID_dsaWithSHA1:
p.sigalgo = QCA::EMSA1_SHA1;
break;
case NID_sha224WithRSAEncryption:
p.sigalgo = QCA::EMSA3_SHA224;
break;
case NID_sha256WithRSAEncryption:
p.sigalgo = QCA::EMSA3_SHA256;
break;
case NID_sha384WithRSAEncryption:
p.sigalgo = QCA::EMSA3_SHA384;
break;
case NID_sha512WithRSAEncryption:
p.sigalgo = QCA::EMSA3_SHA512;
break;
default:
qWarning() << "Unknown signature value: " << X509_CRL_get_signature_nid(x);
p.sigalgo = QCA::SignatureUnknown;
}
int pos = X509_CRL_get_ext_by_NID(x, NID_authority_key_identifier, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509_CRL_get_ext(x, pos);
if(ex)
p.issuerId += get_cert_issuer_key_id(ex);
}
p.number = -1;
pos = X509_CRL_get_ext_by_NID(x, NID_crl_number, -1);
if(pos != -1)
{
X509_EXTENSION *ex = X509_CRL_get_ext(x, pos);
if(ex) {
int *result = (int*) X509V3_EXT_d2i(ex);
p.number = (*result);
ASN1_INTEGER_free((ASN1_INTEGER*)result);
}
}
// FIXME: super hack
CertificateOptions opts;
opts.setInfo(issuer);
p.issuer = opts.infoOrdered();
_props = p;
}
};
//----------------------------------------------------------------------------
// MyCertCollectionContext
//----------------------------------------------------------------------------
class MyCertCollectionContext : public CertCollectionContext
{
Q_OBJECT
public:
MyCertCollectionContext(Provider *p) : CertCollectionContext(p)
{
}
Provider::Context *clone() const override
{
return new MyCertCollectionContext(*this);
}
QByteArray toPKCS7(const QList<CertContext*> &certs, const QList<CRLContext*> &crls) const override
{
// TODO: implement
Q_UNUSED(certs);
Q_UNUSED(crls);
return QByteArray();
}
ConvertResult fromPKCS7(const QByteArray &a, QList<CertContext*> *certs, QList<CRLContext*> *crls) const override
{
BIO *bi = BIO_new(BIO_s_mem());
BIO_write(bi, a.data(), a.size());
PKCS7 *p7 = d2i_PKCS7_bio(bi, NULL);
BIO_free(bi);
if(!p7)
return ErrorDecode;
STACK_OF(X509) *xcerts = 0;
STACK_OF(X509_CRL) *xcrls = 0;
int i = OBJ_obj2nid(p7->type);
if(i == NID_pkcs7_signed)
{
xcerts = p7->d.sign->cert;
xcrls = p7->d.sign->crl;
}
else if(i == NID_pkcs7_signedAndEnveloped)
{
xcerts = p7->d.signed_and_enveloped->cert;
xcrls = p7->d.signed_and_enveloped->crl;
}
QList<CertContext*> _certs;
QList<CRLContext*> _crls;
if(xcerts)
{
for(int n = 0; n < sk_X509_num(xcerts); ++n)
{
MyCertContext *cc = new MyCertContext(provider());
cc->fromX509(sk_X509_value(xcerts, n));
_certs += cc;
}
}
if(xcrls)
{
for(int n = 0; n < sk_X509_CRL_num(xcrls); ++n)
{
MyCRLContext *cc = new MyCRLContext(provider());
cc->fromX509(sk_X509_CRL_value(xcrls, n));
_crls += cc;
}
}
PKCS7_free(p7);
*certs = _certs;
*crls = _crls;
return ConvertGood;
}
};
static bool usage_check(const MyCertContext &cc, UsageMode u)
{
if (cc._props.constraints.isEmpty() ) {
// then any usage is OK
return true;
}
switch (u)
{
case UsageAny :
return true;
break;
case UsageTLSServer :
return cc._props.constraints.contains(ServerAuth);
break;
case UsageTLSClient :
return cc._props.constraints.contains(ClientAuth);
break;
case UsageCodeSigning :
return cc._props.constraints.contains(CodeSigning);
break;
case UsageEmailProtection :
return cc._props.constraints.contains(EmailProtection);
break;
case UsageTimeStamping :
return cc._props.constraints.contains(TimeStamping);
break;
case UsageCRLSigning :
return cc._props.constraints.contains(CRLSign);
break;
default:
return true;
}
}
Validity MyCertContext::validate(const QList<CertContext*> &trusted, const QList<CertContext*> &untrusted, const QList<CRLContext*> &crls, UsageMode u, ValidateFlags vf) const
{
// TODO
Q_UNUSED(vf);
STACK_OF(X509) *trusted_list = sk_X509_new_null();
STACK_OF(X509) *untrusted_list = sk_X509_new_null();
QList<X509_CRL*> crl_list;
int n;
for(n = 0; n < trusted.count(); ++n)
{
const MyCertContext *cc = static_cast<const MyCertContext *>(trusted[n]);
X509 *x = cc->item.cert;
X509_up_ref(x);
sk_X509_push(trusted_list, x);
}
for(n = 0; n < untrusted.count(); ++n)
{
const MyCertContext *cc = static_cast<const MyCertContext *>(untrusted[n]);
X509 *x = cc->item.cert;
X509_up_ref(x);
sk_X509_push(untrusted_list, x);
}
for(n = 0; n < crls.count(); ++n)
{
const MyCRLContext *cc = static_cast<const MyCRLContext *>(crls[n]);
X509_CRL *x = cc->item.crl;
X509_CRL_up_ref(x);
crl_list.append(x);
}
const MyCertContext *cc = this;
X509 *x = cc->item.cert;
// verification happens through a store "context"
X509_STORE_CTX *ctx = X509_STORE_CTX_new();
// make a store of crls
X509_STORE *store = X509_STORE_new();
for(int n = 0; n < crl_list.count(); ++n)
X509_STORE_add_crl(store, crl_list[n]);
// the first initialization handles untrusted certs, crls, and target cert
X509_STORE_CTX_init(ctx, store, x, untrusted_list);
// this initializes the trusted certs
X509_STORE_CTX_trusted_stack(ctx, trusted_list);
// verify!
int ret = X509_verify_cert(ctx);
int err = -1;
if(!ret)
err = X509_STORE_CTX_get_error(ctx);
// cleanup
X509_STORE_CTX_free(ctx);
X509_STORE_free(store);
sk_X509_pop_free(trusted_list, X509_free);
sk_X509_pop_free(untrusted_list, X509_free);
for(int n = 0; n < crl_list.count(); ++n)
X509_CRL_free(crl_list[n]);
if(!ret)
return convert_verify_error(err);
if(!usage_check(*cc, u))
return ErrorInvalidPurpose;
return ValidityGood;
}
Validity MyCertContext::validate_chain(const QList<CertContext*> &chain, const QList<CertContext*> &trusted, const QList<CRLContext*> &crls, UsageMode u, ValidateFlags vf) const
{
// TODO
Q_UNUSED(vf);
STACK_OF(X509) *trusted_list = sk_X509_new_null();
STACK_OF(X509) *untrusted_list = sk_X509_new_null();
QList<X509_CRL*> crl_list;
int n;
for(n = 0; n < trusted.count(); ++n)
{
const MyCertContext *cc = static_cast<const MyCertContext *>(trusted[n]);
X509 *x = cc->item.cert;
X509_up_ref(x);
sk_X509_push(trusted_list, x);
}
for(n = 1; n < chain.count(); ++n)
{
const MyCertContext *cc = static_cast<const MyCertContext *>(chain[n]);
X509 *x = cc->item.cert;
X509_up_ref(x);
sk_X509_push(untrusted_list, x);
}
for(n = 0; n < crls.count(); ++n)
{
const MyCRLContext *cc = static_cast<const MyCRLContext *>(crls[n]);
X509_CRL *x = cc->item.crl;
X509_CRL_up_ref(x);
crl_list.append(x);
}
const MyCertContext *cc = static_cast<const MyCertContext *>(chain[0]);
X509 *x = cc->item.cert;
// verification happens through a store "context"
X509_STORE_CTX *ctx = X509_STORE_CTX_new();
// make a store of crls
X509_STORE *store = X509_STORE_new();
for(int n = 0; n < crl_list.count(); ++n)
X509_STORE_add_crl(store, crl_list[n]);
// the first initialization handles untrusted certs, crls, and target cert
X509_STORE_CTX_init(ctx, store, x, untrusted_list);
// this initializes the trusted certs
X509_STORE_CTX_trusted_stack(ctx, trusted_list);
// verify!
int ret = X509_verify_cert(ctx);
int err = -1;
if(!ret)
err = X509_STORE_CTX_get_error(ctx);
// grab the chain, which may not be fully populated
STACK_OF(X509) *xchain = X509_STORE_CTX_get_chain(ctx);
// make sure the chain is what we expect. the reason we need to do
// this is because I don't think openssl cares about the order of
// input. that is, if there's a chain A<-B<-C, and we input A as
// the base cert, with B and C as the issuers, we will get a
// successful validation regardless of whether the issuer list is
// in the order B,C or C,B. we don't want an input chain of A,C,B
// to be considered correct, so we must account for that here.
QList<const MyCertContext*> expected;
for(int n = 0; n < chain.count(); ++n)
expected += static_cast<const MyCertContext *>(chain[n]);
if(!xchain || !sameChain(xchain, expected))
err = ErrorValidityUnknown;
// cleanup
X509_STORE_CTX_free(ctx);
X509_STORE_free(store);
sk_X509_pop_free(trusted_list, X509_free);
sk_X509_pop_free(untrusted_list, X509_free);
for(int n = 0; n < crl_list.count(); ++n)
X509_CRL_free(crl_list[n]);
if(!ret)
return convert_verify_error(err);
if(!usage_check(*cc, u))
return ErrorInvalidPurpose;
return ValidityGood;
}
class MyPKCS12Context : public PKCS12Context
{
Q_OBJECT
public:
MyPKCS12Context(Provider *p) : PKCS12Context(p)
{
}
~MyPKCS12Context()
{
}
Provider::Context *clone() const override
{
return 0;
}
QByteArray toPKCS12(const QString &name, const QList<const CertContext*> &chain, const PKeyContext &priv, const SecureArray &passphrase) const override
{
if(chain.count() < 1)
return QByteArray();
X509 *cert = static_cast<const MyCertContext *>(chain[0])->item.cert;
STACK_OF(X509) *ca = sk_X509_new_null();
if(chain.count() > 1)
{
for(int n = 1; n < chain.count(); ++n)
{
X509 *x = static_cast<const MyCertContext *>(chain[n])->item.cert;
X509_up_ref(x);
sk_X509_push(ca, x);
}
}
const MyPKeyContext &pk = static_cast<const MyPKeyContext &>(priv);
PKCS12 *p12 = PKCS12_create((char *)passphrase.data(), (char *)name.toLatin1().data(), pk.get_pkey(), cert, ca, 0, 0, 0, 0, 0);
sk_X509_pop_free(ca, X509_free);
if(!p12)
return QByteArray();
BIO *bo = BIO_new(BIO_s_mem());
i2d_PKCS12_bio(bo, p12);
QByteArray out = bio2ba(bo);
return out;
}
ConvertResult fromPKCS12(const QByteArray &in, const SecureArray &passphrase, QString *name, QList<CertContext*> *chain, PKeyContext **priv) const override
{
BIO *bi = BIO_new(BIO_s_mem());
BIO_write(bi, in.data(), in.size());
PKCS12 *p12 = d2i_PKCS12_bio(bi, NULL);
if(!p12)
return ErrorDecode;
EVP_PKEY *pkey;
X509 *cert;
STACK_OF(X509) *ca = NULL;
if(!PKCS12_parse(p12, passphrase.data(), &pkey, &cert, &ca))
{
PKCS12_free(p12);
return ErrorDecode;
}
PKCS12_free(p12);
// require private key
if(!pkey)
{
if(cert)
X509_free(cert);
if(ca)
sk_X509_pop_free(ca, X509_free);
return ErrorDecode;
}
// TODO: require cert
int aliasLength;
char *aliasData = (char*)X509_alias_get0(cert, &aliasLength);
*name = QString::fromLatin1(aliasData, aliasLength);
MyPKeyContext *pk = new MyPKeyContext(provider());
PKeyBase *k = pk->pkeyToBase(pkey, true); // does an EVP_PKEY_free()
pk->k = k;
*priv = pk;
QList<CertContext*> certs;
if(cert)
{
MyCertContext *cc = new MyCertContext(provider());
cc->fromX509(cert);
certs.append(cc);
X509_free(cert);
}
if(ca)
{
// TODO: reorder in chain-order?
// TODO: throw out certs that don't fit the chain?
for(int n = 0; n < sk_X509_num(ca); ++n)
{
MyCertContext *cc = new MyCertContext(provider());
cc->fromX509(sk_X509_value(ca, n));
certs.append(cc);
}
sk_X509_pop_free(ca, X509_free);
}
// reorder, throw out
QCA::CertificateChain ch;
for(int n = 0; n < certs.count(); ++n)
{
QCA::Certificate cert;
cert.change(certs[n]);
ch += cert;
}
certs.clear();
ch = ch.complete(QList<QCA::Certificate>());
for(int n = 0; n < ch.count(); ++n)
{
MyCertContext *cc = (MyCertContext *)ch[n].context();
certs += (new MyCertContext(*cc));
}
ch.clear();
*chain = certs;
return ConvertGood;
}
};
//==========================================================
static QString cipherIDtoString( const TLS::Version &version, const unsigned long &cipherID)
{
if (TLS::TLS_v1 == version) {
switch( cipherID & 0xFFFF ) {
case 0x0000:
// RFC 2246 A.5
return QString("TLS_NULL_WITH_NULL_NULL");
break;
case 0x0001:
// RFC 2246 A.5
return QString("TLS_RSA_WITH_NULL_MD5");
break;
case 0x0002:
// RFC 2246 A.5
return QString("TLS_RSA_WITH_NULL_SHA");
break;
case 0x0003:
// RFC 2246 A.5
return QString("TLS_RSA_EXPORT_WITH_RC4_40_MD5");
break;
case 0x0004:
// RFC 2246 A.5
return QString("TLS_RSA_WITH_RC4_128_MD5");
break;
case 0x0005:
// RFC 2246 A.5
return QString("TLS_RSA_WITH_RC4_128_SHA");
break;
case 0x0006:
// RFC 2246 A.5
return QString("TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5");
break;
case 0x0007:
// RFC 2246 A.5
return QString("TLS_RSA_WITH_IDEA_CBC_SHA");
break;
case 0x0008:
// RFC 2246 A.5
return QString("TLS_RSA_EXPORT_WITH_DES40_CBC_SHA");
break;
case 0x0009:
// RFC 2246 A.5
return QString("TLS_RSA_WITH_DES_CBC_SHA");
break;
case 0x000A:
// RFC 2246 A.5
return QString("TLS_RSA_WITH_3DES_EDE_CBC_SHA");
break;
case 0x000B:
// RFC 2246 A.5
return QString("TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA");
break;
case 0x000C:
// RFC 2246 A.5
return QString("TLS_DH_DSS_WITH_DES_CBC_SHA");
break;
case 0x000D:
// RFC 2246 A.5
return QString("TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA");
break;
case 0x000E:
// RFC 2246 A.5
return QString("TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA");
break;
case 0x000F:
// RFC 2246 A.5
return QString("TLS_DH_RSA_WITH_DES_CBC_SHA");
break;
case 0x0010:
// RFC 2246 A.5
return QString("TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA");
break;
case 0x0011:
// RFC 2246 A.5
return QString("TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA");
break;
case 0x0012:
// RFC 2246 A.5
return QString("TLS_DHE_DSS_WITH_DES_CBC_SHA");
break;
case 0x0013:
// RFC 2246 A.5
return QString("TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA");
break;
case 0x0014:
// RFC 2246 A.5
return QString("TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA");
break;
case 0x0015:
// RFC 2246 A.5
return QString("TLS_DHE_RSA_WITH_DES_CBC_SHA");
break;
case 0x0016:
// RFC 2246 A.5
return QString("TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA");
break;
case 0x0017:
// RFC 2246 A.5
return QString("TLS_DH_anon_EXPORT_WITH_RC4_40_MD5");
break;
case 0x0018:
// RFC 2246 A.5
return QString("TLS_DH_anon_WITH_RC4_128_MD5");
break;
case 0x0019:
// RFC 2246 A.5
return QString("TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA");
break;
case 0x001A:
// RFC 2246 A.5
return QString("TLS_DH_anon_WITH_DES_CBC_SHA");
break;
case 0x001B:
// RFC 2246 A.5
return QString("TLS_DH_anon_WITH_3DES_EDE_CBC_SHA");
break;
// 0x001C and 0x001D are reserved to avoid collision with SSL3 Fortezza.
case 0x001E:
// RFC 2712 Section 3
return QString("TLS_KRB5_WITH_DES_CBC_SHA");
break;
case 0x001F:
// RFC 2712 Section 3
return QString("TLS_KRB5_WITH_3DES_EDE_CBC_SHA");
break;
case 0x0020:
// RFC 2712 Section 3
return QString("TLS_KRB5_WITH_RC4_128_SHA");
break;
case 0x0021:
// RFC 2712 Section 3
return QString("TLS_KRB5_WITH_IDEA_CBC_SHA");
break;
case 0x0022:
// RFC 2712 Section 3
return QString("TLS_KRB5_WITH_DES_CBC_MD5");
break;
case 0x0023:
// RFC 2712 Section 3
return QString("TLS_KRB5_WITH_3DES_EDE_CBC_MD5");
break;
case 0x0024:
// RFC 2712 Section 3
return QString("TLS_KRB5_WITH_RC4_128_MD5");
break;
case 0x0025:
// RFC 2712 Section 3
return QString("TLS_KRB5_WITH_IDEA_CBC_MD5");
break;
case 0x0026:
// RFC 2712 Section 3
return QString("TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA");
break;
case 0x0027:
// RFC 2712 Section 3
return QString("TLS_KRB5_EXPORT_WITH_RC2_CBC_40_SHA");
break;
case 0x0028:
// RFC 2712 Section 3
return QString("TLS_KRB5_EXPORT_WITH_RC4_40_SHA");
break;
case 0x0029:
// RFC 2712 Section 3
return QString("TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5");
break;
case 0x002A:
// RFC 2712 Section 3
return QString("TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5");
break;
case 0x002B:
// RFC 2712 Section 3
return QString("TLS_KRB5_EXPORT_WITH_RC4_40_MD5");
break;
case 0x002F:
// RFC 3268
return QString("TLS_RSA_WITH_AES_128_CBC_SHA");
break;
case 0x0030:
// RFC 3268
return QString("TLS_DH_DSS_WITH_AES_128_CBC_SHA");
break;
case 0x0031:
// RFC 3268
return QString("TLS_DH_RSA_WITH_AES_128_CBC_SHA");
break;
case 0x0032:
// RFC 3268
return QString("TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
break;
case 0x0033:
// RFC 3268
return QString("TLS_DHE_RSA_WITH_AES_128_CBC_SHA");
break;
case 0x0034:
// RFC 3268
return QString("TLS_DH_anon_WITH_AES_128_CBC_SHA");
break;
case 0x0035:
// RFC 3268
return QString("TLS_RSA_WITH_AES_256_CBC_SHA");
break;
case 0x0036:
// RFC 3268
return QString("TLS_DH_DSS_WITH_AES_256_CBC_SHA");
break;
case 0x0037:
// RFC 3268
return QString("TLS_DH_RSA_WITH_AES_256_CBC_SHA");
break;
case 0x0038:
// RFC 3268
return QString("TLS_DHE_DSS_WITH_AES_256_CBC_SHA");
break;
case 0x0039:
// RFC 3268
return QString("TLS_DHE_RSA_WITH_AES_256_CBC_SHA");
break;
case 0x003A:
// RFC 3268
return QString("TLS_DH_anon_WITH_AES_256_CBC_SHA");
break;
// TODO: 0x0041 -> 0x0046 are from RFC4132 (Camellia)
case 0x0060:
// Was meant to be from draft-ietf-tls-56-bit-ciphersuites-01.txt, but isn't
return QString("TLS_CK_RSA_EXPORT1024_WITH_RC4_56_MD5");
break;
case 0x0061:
// Was meant to be from draft-ietf-tls-56-bit-ciphersuites-01.txt, but isn't
return QString("TLS_CK_RSA_EXPORT1024_WITH_RC2_CBC_56_MD5");
break;
case 0x0062:
// Apparently from draft-ietf-tls-56-bit-ciphersuites-01.txt
return QString("TLS_CK_RSA_EXPORT1024_WITH_DES_CBC_SHA");
break;
case 0x0063:
// Apparently from draft-ietf-tls-56-bit-ciphersuites-01.txt
return QString("TLS_CK_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA");
break;
case 0x0064:
// Apparently from draft-ietf-tls-56-bit-ciphersuites-01.txt
return QString("TLS_CK_RSA_EXPORT1024_WITH_RC4_56_SHA");
break;
case 0x0065:
// Apparently from draft-ietf-tls-56-bit-ciphersuites-01.txt
return QString("TLS_CK_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA");
break;
case 0x0066:
// Apparently from draft-ietf-tls-56-bit-ciphersuites-01.txt
return QString("TLS_CK_DHE_DSS_WITH_RC4_128_SHA");
break;
// TODO: 0x0084 -> 0x0089 are from RFC4132 (Camellia)
// TODO: 0x008A -> 0x0095 are from RFC4279 (PSK)
// TODO: 0xC000 -> 0xC019 are from the ECC draft
default:
return QString("TLS algo to be added: %1").arg(cipherID & 0xffff, 0, 16);
break;
}
} else if (TLS::SSL_v3 == version) {
switch( cipherID & 0xFFFF ) {
case 0x0000:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_NULL_WITH_NULL_NULL");
break;
case 0x0001:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_RSA_WITH_NULL_MD5");
break;
case 0x0002:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_RSA_WITH_NULL_SHA");
break;
case 0x0003:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_RSA_EXPORT_WITH_RC4_40_MD5");
break;
case 0x0004:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_RSA_WITH_RC4_128_MD5");
break;
case 0x0005:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_RSA_WITH_RC4_128_SHA");
break;
case 0x0006:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5");
break;
case 0x0007:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_RSA_WITH_IDEA_CBC_SHA");
break;
case 0x0008:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_RSA_EXPORT_WITH_DES40_CBC_SHA");
break;
case 0x0009:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_RSA_WITH_DES_CBC_SHA");
break;
case 0x000A:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_RSA_WITH_3DES_EDE_CBC_SHA");
break;
case 0x000B:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA");
break;
case 0x000C:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DH_DSS_WITH_DES_CBC_SHA");
break;
case 0x000D:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA");
break;
case 0x000E:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DH_RSA_WITH_DES_CBC_SHA");
break;
case 0x000F:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DH_RSA_WITH_DES_CBC_SHA");
break;
case 0x0010:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA");
break;
case 0x0011:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA");
break;
case 0x0012:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DHE_DSS_WITH_DES_CBC_SHA");
break;
case 0x0013:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA");
break;
case 0x0014:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA");
break;
case 0x0015:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DHE_RSA_WITH_DES_CBC_SHA");
break;
case 0x0016:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA");
break;
case 0x0017:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SL_DH_anon_EXPORT_WITH_RC4_40_MD5");
break;
case 0x0018:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DH_anon_WITH_RC4_128_MD5");
break;
case 0x0019:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA");
break;
case 0x001A:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DH_anon_WITH_DES_CBC_SHA");
break;
case 0x001B:
// From the Netscape SSL3 Draft (nov 1996)
return QString("SSL_DH_anon_WITH_3DES_EDE_CBC_SHA");
break;
// TODO: Sort out the Fortezza mess...
// These aren't in the Netscape SSL3 draft, but openssl does
// allow you to use them with SSL3.
case 0x001E:
return QString("SSL_KRB5_WITH_DES_CBC_SHA");
break;
case 0x001F:
return QString("SSL_KRB5_WITH_3DES_EDE_CBC_SHA");
break;
case 0x0020:
return QString("SSL_KRB5_WITH_RC4_128_SHA");
break;
case 0x0021:
return QString("SSL_KRB5_WITH_IDEA_CBC_SHA");
break;
case 0x0022:
return QString("SSL_KRB5_WITH_DES_CBC_MD5");
break;
case 0x0023:
return QString("SSL_KRB5_WITH_3DES_EDE_CBC_MD5");
break;
case 0x0024:
return QString("SSL_KRB5_WITH_RC4_128_MD5");
break;
case 0x0025:
return QString("SSL_KRB5_WITH_IDEA_CBC_MD5");
break;
case 0x0026:
return QString("SSL_KRB5_EXPORT_WITH_DES_CBC_40_SHA");
break;
case 0x0027:
return QString("SSL_KRB5_EXPORT_WITH_RC2_CBC_40_SHA");
break;
case 0x0028:
return QString("SSL_KRB5_EXPORT_WITH_RC4_40_SHA");
break;
case 0x0029:
return QString("SSL_KRB5_EXPORT_WITH_DES_CBC_40_MD5");
break;
case 0x002A:
return QString("SSL_KRB5_EXPORT_WITH_RC2_CBC_40_MD5");
break;
case 0x002B:
return QString("SSL_KRB5_EXPORT_WITH_RC4_40_MD5");
break;
case 0x002F:
return QString("SSL_RSA_WITH_AES_128_CBC_SHA");
break;
case 0x0030:
return QString("SSL_DH_DSS_WITH_AES_128_CBC_SHA");
break;
case 0x0031:
return QString("SSL_DH_RSA_WITH_AES_128_CBC_SHA");
break;
case 0x0032:
return QString("SSL_DHE_DSS_WITH_AES_128_CBC_SHA");
break;
case 0x0033:
return QString("SSL_DHE_RSA_WITH_AES_128_CBC_SHA");
break;
case 0x0034:
return QString("SSL_DH_anon_WITH_AES_128_CBC_SHA");
break;
case 0x0035:
return QString("SSL_RSA_WITH_AES_256_CBC_SHA");
break;
case 0x0036:
return QString("SSL_DH_DSS_WITH_AES_256_CBC_SHA");
break;
case 0x0037:
return QString("SSL_DH_RSA_WITH_AES_256_CBC_SHA");
break;
case 0x0038:
return QString("SSL_DHE_DSS_WITH_AES_256_CBC_SHA");
break;
case 0x0039:
return QString("SSL_DHE_RSA_WITH_AES_256_CBC_SHA");
break;
case 0x003A:
return QString("SSL_DH_anon_WITH_AES_256_CBC_SHA");
break;
case 0x0060:
// Was meant to be from draft-ietf-tls-56-bit-ciphersuites-01.txt, but isn't
return QString("SSL_CK_RSA_EXPORT1024_WITH_RC4_56_MD5");
break;
case 0x0061:
// Was meant to be from draft-ietf-tls-56-bit-ciphersuites-01.txt, but isn't
return QString("SSL_CK_RSA_EXPORT1024_WITH_RC2_CBC_56_MD5");
break;
case 0x0062:
// Apparently from draft-ietf-tls-56-bit-ciphersuites-01.txt
return QString("SSL_CK_RSA_EXPORT1024_WITH_DES_CBC_SHA");
break;
case 0x0063:
// Apparently from draft-ietf-tls-56-bit-ciphersuites-01.txt
return QString("SSL_CK_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA");
break;
case 0x0064:
// Apparently from draft-ietf-tls-56-bit-ciphersuites-01.txt
return QString("SSL_CK_RSA_EXPORT1024_WITH_RC4_56_SHA");
break;
case 0x0065:
// Apparently from draft-ietf-tls-56-bit-ciphersuites-01.txt
return QString("SSL_CK_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA");
break;
case 0x0066:
// Apparently from draft-ietf-tls-56-bit-ciphersuites-01.txt
return QString("SSL_CK_DHE_DSS_WITH_RC4_128_SHA");
break;
default:
return QString("SSL3 to be added: %1").arg(cipherID & 0xffff, 0, 16);
break;
}
} else if (TLS::SSL_v2 == version) {
switch( cipherID & 0xffffff) {
case 0x010080:
// From the Netscape SSL2 Draft Section C.4 (nov 1994)
return QString("SSL_CK_RC4_128_WITH_MD5");
break;
case 0x020080:
// From the Netscape SSL2 Draft Section C.4 (nov 1994)
return QString("SSL_CK_RC4_128_EXPORT40_WITH_MD5");
break;
case 0x030080:
// From the Netscape SSL2 Draft Section C.4 (nov 1994)
return QString("SSL_CK_RC2_128_CBC_WITH_MD5");
break;
case 0x040080:
// From the Netscape SSL2 Draft Section C.4 (nov 1994)
return QString("SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5");
break;
case 0x050080:
// From the Netscape SSL2 Draft Section C.4 (nov 1994)
return QString("SSL_CK_RC4_128_EXPORT40_WITH_MD5");
break;
case 0x060040:
// From the Netscape SSL2 Draft Section C.4 (nov 1994)
return QString("SSL_CK_DES_64_CBC_WITH_MD5");
break;
case 0x0700C0:
// From the Netscape SSL2 Draft Section C.4 (nov 1994)
return QString("SSL_CK_DES_192_EDE3_CBC_WITH_MD5");
break;
case 0x080080:
// From the openssl source, which says "MS hack"
return QString("SSL_CK_RC4_64_WITH_MD5");
break;
default:
return QString("SSL2 to be added: %1").arg(cipherID & 0xffffff, 0, 16);
break;
}
}
else {
return QString("Unknown version!");
}
}
// TODO: test to ensure there is no cert-test lag
static bool ssl_init = false;
class MyTLSContext : public TLSContext
{
Q_OBJECT
public:
enum { Good, TryAgain, Bad };
enum { Idle, Connect, Accept, Handshake, Active, Closing };
bool serv; // true if we are acting as a server
int mode;
QByteArray sendQueue;
QByteArray recvQueue;
CertificateCollection trusted;
Certificate cert, peercert; // TODO: support cert chains
PrivateKey key;
QString targetHostName;
Result result_result;
QByteArray result_to_net;
int result_encoded;
QByteArray result_plain;
SSL *ssl;
#if OPENSSL_VERSION_NUMBER >= 0x00909000L
const SSL_METHOD *method;
#else
SSL_METHOD *method;
#endif
SSL_CTX *context;
BIO *rbio, *wbio;
Validity vr;
bool v_eof;
MyTLSContext(Provider *p) : TLSContext(p, "tls")
{
if(!ssl_init)
{
SSL_library_init();
SSL_load_error_strings();
ssl_init = true;
}
ssl = 0;
context = 0;
reset();
}
~MyTLSContext()
{
reset();
}
Provider::Context *clone() const override
{
return 0;
}
void reset() override
{
if(ssl)
{
SSL_free(ssl);
ssl = 0;
}
if(context)
{
SSL_CTX_free(context);
context = 0;
}
cert = Certificate();
key = PrivateKey();
sendQueue.resize(0);
recvQueue.resize(0);
mode = Idle;
peercert = Certificate();
vr = ErrorValidityUnknown;
v_eof = false;
}
// dummy verification function for SSL_set_verify()
static int ssl_verify_callback(int preverify_ok, X509_STORE_CTX *x509_ctx)
{
Q_UNUSED(preverify_ok);
Q_UNUSED(x509_ctx);
// don't terminate handshake in case of verification failure
return 1;
}
QStringList supportedCipherSuites(const TLS::Version &version) const override
{
OpenSSL_add_ssl_algorithms();
SSL_CTX *ctx = 0;
switch (version) {
#if !defined(OPENSSL_NO_SSL2) && !defined(OSSL_110)
case TLS::SSL_v2:
ctx = SSL_CTX_new(SSLv2_client_method());
break;
#endif
#ifndef OPENSSL_NO_SSL3_METHOD
case TLS::SSL_v3:
ctx = SSL_CTX_new(SSLv3_client_method());
break;
#endif
case TLS::TLS_v1:
ctx = SSL_CTX_new(TLSv1_client_method());
break;
case TLS::DTLS_v1:
default:
/* should not happen - should be in a "dtls" provider*/
qWarning("Unexpected enum in cipherSuites");
ctx = 0;
}
if (NULL == ctx)
return QStringList();
SSL *ssl = SSL_new(ctx);
if (NULL == ssl) {
SSL_CTX_free(ctx);
return QStringList();
}
STACK_OF(SSL_CIPHER) *sk = SSL_get_ciphers(ssl);
QStringList cipherList;
for(int i = 0; i < sk_SSL_CIPHER_num(sk); ++i) {
const SSL_CIPHER *thisCipher = sk_SSL_CIPHER_value(sk, i);
cipherList += cipherIDtoString(version, SSL_CIPHER_get_id(thisCipher));
}
SSL_free(ssl);
SSL_CTX_free(ctx);
return cipherList;
}
bool canCompress() const override
{
// TODO
return false;
}
bool canSetHostName() const override
{
// TODO
return false;
}
int maxSSF() const override
{
// TODO
return 256;
}
void setConstraints(int minSSF, int maxSSF) override
{
// TODO
Q_UNUSED(minSSF);
Q_UNUSED(maxSSF);
}
void setConstraints(const QStringList &cipherSuiteList) override
{
// TODO
Q_UNUSED(cipherSuiteList);
}
void setup(bool serverMode, const QString &hostName, bool compress) override
{
serv = serverMode;
if ( false == serverMode ) {
// client
targetHostName = hostName;
}
Q_UNUSED(compress); // TODO
}
void setTrustedCertificates(const CertificateCollection &_trusted) override
{
trusted = _trusted;
}
void setIssuerList(const QList<CertificateInfoOrdered> &issuerList) override
{
Q_UNUSED(issuerList); // TODO
}
void setCertificate(const CertificateChain &_cert, const PrivateKey &_key) override
{
if(!_cert.isEmpty())
cert = _cert.primary(); // TODO: take the whole chain
key = _key;
}
void setSessionId(const TLSSessionContext &id) override
{
// TODO
Q_UNUSED(id);
}
void shutdown() override
{
mode = Closing;
}
void start() override
{
bool ok;
if(serv)
ok = priv_startServer();
else
ok = priv_startClient();
result_result = ok ? Success : Error;
doResultsReady();
}
void update(const QByteArray &from_net, const QByteArray &from_app) override
{
if(mode == Active)
{
bool ok = true;
if(!from_app.isEmpty())
ok = priv_encode(from_app, &result_to_net, &result_encoded);
if(ok)
ok = priv_decode(from_net, &result_plain, &result_to_net);
result_result = ok ? Success : Error;
}
else if(mode == Closing)
result_result = priv_shutdown(from_net, &result_to_net);
else
result_result = priv_handshake(from_net, &result_to_net);
//printf("update (from_net=%d, to_net=%d, from_app=%d, to_app=%d)\n", from_net.size(), result_to_net.size(), from_app.size(), result_plain.size());
doResultsReady();
}
bool priv_startClient()
{
//serv = false;
method = SSLv23_client_method();
if(!init())
return false;
mode = Connect;
return true;
}
bool priv_startServer()
{
//serv = true;
method = SSLv23_server_method();
if(!init())
return false;
mode = Accept;
return true;
}
Result priv_handshake(const QByteArray &from_net, QByteArray *to_net)
{
if(!from_net.isEmpty())
BIO_write(rbio, from_net.data(), from_net.size());
if(mode == Connect)
{
int ret = doConnect();
if(ret == Good)
{
mode = Handshake;
}
else if(ret == Bad)
{
reset();
return Error;
}
}
if(mode == Accept)
{
int ret = doAccept();
if(ret == Good)
{
getCert();
mode = Active;
}
else if(ret == Bad)
{
reset();
return Error;
}
}
if(mode == Handshake)
{
int ret = doHandshake();
if(ret == Good)
{
getCert();
mode = Active;
}
else if(ret == Bad)
{
reset();
return Error;
}
}
// process outgoing
*to_net = readOutgoing();
if(mode == Active)
return Success;
else
return Continue;
}
Result priv_shutdown(const QByteArray &from_net, QByteArray *to_net)
{
if(!from_net.isEmpty())
BIO_write(rbio, from_net.data(), from_net.size());
int ret = doShutdown();
if(ret == Bad)
{
reset();
return Error;
}
*to_net = readOutgoing();
if(ret == Good)
{
mode = Idle;
return Success;
}
else
{
//mode = Closing;
return Continue;
}
}
bool priv_encode(const QByteArray &plain, QByteArray *to_net, int *enc)
{
if(mode != Active)
return false;
sendQueue.append(plain);
int encoded = 0;
if(sendQueue.size() > 0)
{
int ret = SSL_write(ssl, sendQueue.data(), sendQueue.size());
enum { Good, Continue, Done, Error };
int m;
if(ret <= 0)
{
int x = SSL_get_error(ssl, ret);
if(x == SSL_ERROR_WANT_READ || x == SSL_ERROR_WANT_WRITE)
m = Continue;
else if(x == SSL_ERROR_ZERO_RETURN)
m = Done;
else
m = Error;
}
else
{
m = Good;
encoded = ret;
int newsize = sendQueue.size() - encoded;
char *r = sendQueue.data();
memmove(r, r + encoded, newsize);
sendQueue.resize(newsize);
}
if(m == Done)
{
sendQueue.resize(0);
v_eof = true;
return false;
}
if(m == Error)
{
sendQueue.resize(0);
return false;
}
}
*to_net += readOutgoing();
*enc = encoded;
return true;
}
bool priv_decode(const QByteArray &from_net, QByteArray *plain, QByteArray *to_net)
{
if(mode != Active)
return false;
if(!from_net.isEmpty())
BIO_write(rbio, from_net.data(), from_net.size());
QByteArray a;
while(!v_eof) {
a.resize(8192);
int ret = SSL_read(ssl, a.data(), a.size());
//printf("SSL_read = %d\n", ret);
if(ret > 0)
{
if(ret != (int)a.size())
a.resize(ret);
//printf("SSL_read chunk: [%s]\n", qPrintable(arrayToHex(a)));
recvQueue.append(a);
}
else if(ret <= 0)
{
ERR_print_errors_fp(stdout);
int x = SSL_get_error(ssl, ret);
//printf("SSL_read error = %d\n", x);
if(x == SSL_ERROR_WANT_READ || x == SSL_ERROR_WANT_WRITE)
break;
else if(x == SSL_ERROR_ZERO_RETURN)
v_eof = true;
else
return false;
}
}
*plain = recvQueue;
recvQueue.resize(0);
// could be outgoing data also
*to_net += readOutgoing();
return true;
}
bool waitForResultsReady(int msecs) override
{
// TODO: for now, all operations block anyway
Q_UNUSED(msecs);
return true;
}
Result result() const override
{
return result_result;
}
QByteArray to_net() override
{
QByteArray a = result_to_net;
result_to_net.clear();
return a;
}
int encoded() const override
{
return result_encoded;
}
QByteArray to_app() override
{
QByteArray a = result_plain;
result_plain.clear();
return a;
}
bool eof() const override
{
return v_eof;
}
bool clientHelloReceived() const override
{
// TODO
return false;
}
bool serverHelloReceived() const override
{
// TODO
return false;
}
QString hostName() const override
{
// TODO
return QString();
}
bool certificateRequested() const override
{
// TODO
return false;
}
QList<CertificateInfoOrdered> issuerList() const override
{
// TODO
return QList<CertificateInfoOrdered>();
}
SessionInfo sessionInfo() const override
{
SessionInfo sessInfo;
SSL_SESSION *session = SSL_get0_session(ssl);
sessInfo.isCompressed = (0 != SSL_SESSION_get_compress_id(session));
int ssl_version = SSL_version(ssl);
if (ssl_version == TLS1_VERSION)
sessInfo.version = TLS::TLS_v1;
else if (ssl_version == SSL3_VERSION)
sessInfo.version = TLS::SSL_v3;
else if (ssl_version == SSL2_VERSION)
sessInfo.version = TLS::SSL_v2;
else {
qDebug("unexpected version response");
sessInfo.version = TLS::TLS_v1;
}
sessInfo.cipherSuite = cipherIDtoString( sessInfo.version,
SSL_CIPHER_get_id(SSL_get_current_cipher(ssl)));
sessInfo.cipherMaxBits = SSL_get_cipher_bits(ssl, &(sessInfo.cipherBits));
sessInfo.id = 0; // TODO: session resuming
return sessInfo;
}
QByteArray unprocessed() override
{
QByteArray a;
int size = BIO_pending(rbio);
if(size <= 0)
return a;
a.resize(size);
int r = BIO_read(rbio, a.data(), size);
if(r <= 0)
{
a.resize(0);
return a;
}
if(r != size)
a.resize(r);
return a;
}
Validity peerCertificateValidity() const override
{
return vr;
}
CertificateChain peerCertificateChain() const override
{
// TODO: support whole chain
CertificateChain chain;
chain.append(peercert);
return chain;
}
void doResultsReady()
{
QMetaObject::invokeMethod(this, "resultsReady", Qt::QueuedConnection);
}
bool init()
{
context = SSL_CTX_new(method);
if(!context)
return false;
// setup the cert store
{
X509_STORE *store = SSL_CTX_get_cert_store(context);
QList<Certificate> cert_list = trusted.certificates();
QList<CRL> crl_list = trusted.crls();
int n;
for(n = 0; n < cert_list.count(); ++n)
{
const MyCertContext *cc = static_cast<const MyCertContext *>(cert_list[n].context());
X509 *x = cc->item.cert;
//CRYPTO_add(&x->references, 1, CRYPTO_LOCK_X509);
X509_STORE_add_cert(store, x);
}
for(n = 0; n < crl_list.count(); ++n)
{
const MyCRLContext *cc = static_cast<const MyCRLContext *>(crl_list[n].context());
X509_CRL *x = cc->item.crl;
//CRYPTO_add(&x->references, 1, CRYPTO_LOCK_X509_CRL);
X509_STORE_add_crl(store, x);
}
}
ssl = SSL_new(context);
if(!ssl)
{
SSL_CTX_free(context);
context = 0;
return false;
}
SSL_set_ssl_method(ssl, method); // can this return error?
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
if ( targetHostName.isEmpty() == false ) {
// we have a target
// this might fail, but we ignore that for now
char *hostname = targetHostName.toLatin1().data();
SSL_set_tlsext_host_name( ssl, hostname );
}
#endif
// setup the memory bio
rbio = BIO_new(BIO_s_mem());
wbio = BIO_new(BIO_s_mem());
// this passes control of the bios to ssl. we don't need to free them.
SSL_set_bio(ssl, rbio, wbio);
// FIXME: move this to after server hello
// setup the cert to send
if(!cert.isNull() && !key.isNull())
{
PrivateKey nkey = key;
const PKeyContext *tmp_kc = static_cast<const PKeyContext *>(nkey.context());
if(!tmp_kc->sameProvider(this))
{
//fprintf(stderr, "experimental: private key supplied by a different provider\n");
// make a pkey pointing to the existing private key
EVP_PKEY *pkey;
pkey = EVP_PKEY_new();
EVP_PKEY_assign_RSA(pkey, createFromExisting(nkey.toRSA()));
// make a new private key object to hold it
MyPKeyContext *pk = new MyPKeyContext(provider());
PKeyBase *k = pk->pkeyToBase(pkey, true); // does an EVP_PKEY_free()
pk->k = k;
nkey.change(pk);
}
const MyCertContext *cc = static_cast<const MyCertContext *>(cert.context());
const MyPKeyContext *kc = static_cast<const MyPKeyContext *>(nkey.context());
if(SSL_use_certificate(ssl, cc->item.cert) != 1)
{
SSL_free(ssl);
SSL_CTX_free(context);
return false;
}
if(SSL_use_PrivateKey(ssl, kc->get_pkey()) != 1)
{
SSL_free(ssl);
SSL_CTX_free(context);
return false;
}
}
// request a certificate from the client, if in server mode
if(serv)
{
SSL_set_verify(ssl,
SSL_VERIFY_PEER|SSL_VERIFY_CLIENT_ONCE,
ssl_verify_callback);
}
return true;
}
void getCert()
{
// verify the certificate
Validity code = ErrorValidityUnknown;
STACK_OF(X509) *x_chain = SSL_get_peer_cert_chain(ssl);
//X509 *x = SSL_get_peer_certificate(ssl);
if(x_chain)
{
CertificateChain chain;
if(serv)
{
X509 *x = SSL_get_peer_certificate(ssl);
MyCertContext *cc = new MyCertContext(provider());
cc->fromX509(x);
Certificate cert;
cert.change(cc);
chain += cert;
}
for(int n = 0; n < sk_X509_num(x_chain); ++n)
{
X509 *x = sk_X509_value(x_chain, n);
MyCertContext *cc = new MyCertContext(provider());
cc->fromX509(x);
Certificate cert;
cert.change(cc);
chain += cert;
}
peercert = chain.primary();
#ifdef Q_OS_MAC
code = chain.validate(trusted);
#else
int ret = SSL_get_verify_result(ssl);
if(ret == X509_V_OK)
code = ValidityGood;
else
code = convert_verify_error(ret);
#endif
}
else
{
peercert = Certificate();
}
vr = code;
}
int doConnect()
{
int ret = SSL_connect(ssl);
if(ret < 0)
{
int x = SSL_get_error(ssl, ret);
if(x == SSL_ERROR_WANT_CONNECT || x == SSL_ERROR_WANT_READ || x == SSL_ERROR_WANT_WRITE)
return TryAgain;
else
return Bad;
}
else if(ret == 0)
return Bad;
return Good;
}
int doAccept()
{
int ret = SSL_accept(ssl);
if(ret < 0)
{
int x = SSL_get_error(ssl, ret);
if(x == SSL_ERROR_WANT_CONNECT || x == SSL_ERROR_WANT_READ || x == SSL_ERROR_WANT_WRITE)
return TryAgain;
else
return Bad;
}
else if(ret == 0)
return Bad;
return Good;
}
int doHandshake()
{
int ret = SSL_do_handshake(ssl);
if(ret < 0)
{
int x = SSL_get_error(ssl, ret);
if(x == SSL_ERROR_WANT_READ || x == SSL_ERROR_WANT_WRITE)
return TryAgain;
else
return Bad;
}
else if(ret == 0)
return Bad;
return Good;
}
int doShutdown()
{
int ret = SSL_shutdown(ssl);
if(ret >= 1)
return Good;
else
{
if(ret == 0)
return TryAgain;
int x = SSL_get_error(ssl, ret);
if(x == SSL_ERROR_WANT_READ || x == SSL_ERROR_WANT_WRITE)
return TryAgain;
return Bad;
}
}
QByteArray readOutgoing()
{
QByteArray a;
int size = BIO_pending(wbio);
if(size <= 0)
return a;
a.resize(size);
int r = BIO_read(wbio, a.data(), size);
if(r <= 0)
{
a.resize(0);
return a;
}
if(r != size)
a.resize(r);
return a;
}
};
class CMSContext : public SMSContext
{
Q_OBJECT
public:
CertificateCollection trustedCerts;
CertificateCollection untrustedCerts;
QList<SecureMessageKey> privateKeys;
CMSContext(Provider *p) : SMSContext(p, "cms")
{
}
~CMSContext()
{
}
Provider::Context *clone() const override
{
return 0;
}
void setTrustedCertificates(const CertificateCollection &trusted) override
{
trustedCerts = trusted;
}
void setUntrustedCertificates(const CertificateCollection &untrusted) override
{
untrustedCerts = untrusted;
}
void setPrivateKeys(const QList<SecureMessageKey> &keys) override
{
privateKeys = keys;
}
MessageContext *createMessage() override;
};
STACK_OF(X509) *get_pk7_certs(PKCS7 *p7)
{
int i = OBJ_obj2nid(p7->type);
if(i == NID_pkcs7_signed)
return p7->d.sign->cert;
else if(i == NID_pkcs7_signedAndEnveloped)
return p7->d.signed_and_enveloped->cert;
else
return 0;
}
class MyMessageContextThread : public QThread
{
Q_OBJECT
public:
SecureMessage::Format format;
SecureMessage::SignMode signMode;
Certificate cert;
PrivateKey key;
STACK_OF(X509) *other_certs;
BIO *bi;
int flags;
PKCS7 *p7;
bool ok;
QByteArray out, sig;
MyMessageContextThread(QObject *parent = nullptr) : QThread(parent), ok(false)
{
}
protected:
void run() override
{
MyCertContext *cc = static_cast<MyCertContext *>(cert.context());
MyPKeyContext *kc = static_cast<MyPKeyContext *>(key.context());
X509 *cx = cc->item.cert;
EVP_PKEY *kx = kc->get_pkey();
p7 = PKCS7_sign(cx, kx, other_certs, bi, flags);
BIO_free(bi);
sk_X509_pop_free(other_certs, X509_free);
if(p7)
{
//printf("good\n");
BIO *bo;
//BIO *bo = BIO_new(BIO_s_mem());
//i2d_PKCS7_bio(bo, p7);
//PEM_write_bio_PKCS7(bo, p7);
//SecureArray buf = bio2buf(bo);
//printf("[%s]\n", buf.data());
bo = BIO_new(BIO_s_mem());
if(format == SecureMessage::Binary)
i2d_PKCS7_bio(bo, p7);
else // Ascii
PEM_write_bio_PKCS7(bo, p7);
if (SecureMessage::Detached == signMode)
sig = bio2ba(bo);
else
out = bio2ba(bo);
ok = true;
}
else
{
printf("bad here\n");
ERR_print_errors_fp(stdout);
}
}
};
class MyMessageContext : public MessageContext
{
Q_OBJECT
public:
CMSContext *cms;
SecureMessageKey signer;
SecureMessageKeyList to;
SecureMessage::SignMode signMode;
bool bundleSigner;
bool smime;
SecureMessage::Format format;
Operation op;
bool _finished;
QByteArray in, out;
QByteArray sig;
int total;
CertificateChain signerChain;
int ver_ret;
MyMessageContextThread *thread;
MyMessageContext(CMSContext *_cms, Provider *p) : MessageContext(p, "cmsmsg")
{
cms = _cms;
total = 0;
ver_ret = 0;
thread = 0;
}
~MyMessageContext()
{
}
Provider::Context *clone() const override
{
return 0;
}
bool canSignMultiple() const override
{
return false;
}
SecureMessage::Type type() const override
{
return SecureMessage::CMS;
}
void reset() override
{
}
void setupEncrypt(const SecureMessageKeyList &keys) override
{
to = keys;
}
void setupSign(const SecureMessageKeyList &keys, SecureMessage::SignMode m, bool bundleSigner, bool smime) override
{
signer = keys.first();
signMode = m;
this->bundleSigner = bundleSigner;
this->smime = smime;
}
void setupVerify(const QByteArray &detachedSig) override
{
// TODO
sig = detachedSig;
}
void start(SecureMessage::Format f, Operation op) override
{
format = f;
_finished = false;
// TODO: other operations
//if(op == Sign)
//{
this->op = op;
//}
//else if(op == Encrypt)
//{
// this->op = op;
//}
}
void update(const QByteArray &in) override
{
this->in.append(in);
total += in.size();
QMetaObject::invokeMethod(this, "updated", Qt::QueuedConnection);
}
QByteArray read() override
{
return out;
}
int written() override
{
int x = total;
total = 0;
return x;
}
void end() override
{
_finished = true;
// sign
if(op == Sign)
{
CertificateChain chain = signer.x509CertificateChain();
Certificate cert = chain.primary();
QList<Certificate> nonroots;
if(chain.count() > 1)
{
for(int n = 1; n < chain.count(); ++n)
nonroots.append(chain[n]);
}
PrivateKey key = signer.x509PrivateKey();
const PKeyContext *tmp_kc = static_cast<const PKeyContext *>(key.context());
if(!tmp_kc->sameProvider(this))
{
//fprintf(stderr, "experimental: private key supplied by a different provider\n");
// make a pkey pointing to the existing private key
EVP_PKEY *pkey;
pkey = EVP_PKEY_new();
EVP_PKEY_assign_RSA(pkey, createFromExisting(key.toRSA()));
// make a new private key object to hold it
MyPKeyContext *pk = new MyPKeyContext(provider());
PKeyBase *k = pk->pkeyToBase(pkey, true); // does an EVP_PKEY_free()
pk->k = k;
key.change(pk);
}
// allow different cert provider. this is just a
// quick hack, enough to please qca-test
if(!cert.context()->sameProvider(this))
{
//fprintf(stderr, "experimental: cert supplied by a different provider\n");
cert = Certificate::fromDER(cert.toDER());
if(cert.isNull() || !cert.context()->sameProvider(this))
{
//fprintf(stderr, "error converting cert\n");
}
}
//MyCertContext *cc = static_cast<MyCertContext *>(cert.context());
//MyPKeyContext *kc = static_cast<MyPKeyContext *>(key.context());
//X509 *cx = cc->item.cert;
//EVP_PKEY *kx = kc->get_pkey();
STACK_OF(X509) *other_certs;
BIO *bi;
int flags;
//PKCS7 *p7;
// nonroots
other_certs = sk_X509_new_null();
for(int n = 0; n < nonroots.count(); ++n)
{
X509 *x = static_cast<MyCertContext *>(nonroots[n].context())->item.cert;
X509_up_ref(x);
sk_X509_push(other_certs, x);
}
//printf("bundling %d other_certs\n", sk_X509_num(other_certs));
bi = BIO_new(BIO_s_mem());
BIO_write(bi, in.data(), in.size());
flags = 0;
flags |= PKCS7_BINARY;
if (SecureMessage::Detached == signMode) {
flags |= PKCS7_DETACHED;
}
if (false == bundleSigner)
flags |= PKCS7_NOCERTS;
if(thread)
delete thread;
thread = new MyMessageContextThread(this);
thread->format = format;
thread->signMode = signMode;
thread->cert = cert;
thread->key = key;
thread->other_certs = other_certs;
thread->bi = bi;
thread->flags = flags;
connect(thread, &MyMessageContextThread::finished, this, &MyMessageContext::thread_finished);
thread->start();
}
else if(op == Encrypt)
{
// TODO: support multiple recipients
Certificate target = to.first().x509CertificateChain().primary();
STACK_OF(X509) *other_certs;
BIO *bi;
int flags;
PKCS7 *p7;
other_certs = sk_X509_new_null();
X509 *x = static_cast<MyCertContext *>(target.context())->item.cert;
X509_up_ref(x);
sk_X509_push(other_certs, x);
bi = BIO_new(BIO_s_mem());
BIO_write(bi, in.data(), in.size());
flags = 0;
flags |= PKCS7_BINARY;
p7 = PKCS7_encrypt(other_certs, bi, EVP_des_ede3_cbc(), flags); // TODO: cipher?
BIO_free(bi);
sk_X509_pop_free(other_certs, X509_free);
if(p7)
{
// FIXME: format
BIO *bo = BIO_new(BIO_s_mem());
i2d_PKCS7_bio(bo, p7);
//PEM_write_bio_PKCS7(bo, p7);
out = bio2ba(bo);
PKCS7_free(p7);
}
else
{
printf("bad\n");
return;
}
}
else if(op == Verify)
{
// TODO: support non-detached sigs
BIO *out = BIO_new(BIO_s_mem());
BIO *bi = BIO_new(BIO_s_mem());
if (false == sig.isEmpty()) {
// We have detached signature
BIO_write(bi, sig.data(), sig.size());
} else {
BIO_write(bi, in.data(), in.size());
}
PKCS7 *p7;
if(format == SecureMessage::Binary)
p7 = d2i_PKCS7_bio(bi, NULL);
else // Ascii
p7 = PEM_read_bio_PKCS7(bi, NULL, passphrase_cb, NULL);
BIO_free(bi);
if(!p7)
{
// TODO
printf("bad1\n");
QMetaObject::invokeMethod(this, "updated", Qt::QueuedConnection);
return;
}
// intermediates/signers that may not be in the blob
STACK_OF(X509) *other_certs = sk_X509_new_null();
QList<Certificate> untrusted_list = cms->untrustedCerts.certificates();
QList<CRL> untrusted_crls = cms->untrustedCerts.crls(); // we'll use the crls later
for(int n = 0; n < untrusted_list.count(); ++n)
{
X509 *x = static_cast<MyCertContext *>(untrusted_list[n].context())->item.cert;
X509_up_ref(x);
sk_X509_push(other_certs, x);
}
// get the possible message signers
QList<Certificate> signers;
STACK_OF(X509) *xs = PKCS7_get0_signers(p7, other_certs, 0);
if(xs)
{
for(int n = 0; n < sk_X509_num(xs); ++n)
{
MyCertContext *cc = new MyCertContext(provider());
cc->fromX509(sk_X509_value(xs, n));
Certificate cert;
cert.change(cc);
//printf("signer: [%s]\n", qPrintable(cert.commonName()));
signers.append(cert);
}
sk_X509_free(xs);
}
// get the rest of the certificates lying around
QList<Certificate> others;
xs = get_pk7_certs(p7); // don't free
if(xs)
{
for(int n = 0; n < sk_X509_num(xs); ++n)
{
MyCertContext *cc = new MyCertContext(provider());
cc->fromX509(sk_X509_value(xs, n));
Certificate cert;
cert.change(cc);
others.append(cert);
//printf("other: [%s]\n", qPrintable(cert.commonName()));
}
}
// signer needs to be supplied in the message itself
// or via cms->untrustedCerts
if(signers.isEmpty())
{
QMetaObject::invokeMethod(this, "updated", Qt::QueuedConnection);
return;
}
// FIXME: handle more than one signer
CertificateChain chain;
chain += signers[0];
// build chain
chain = chain.complete(others);
signerChain = chain;
X509_STORE *store = X509_STORE_new();
QList<Certificate> cert_list = cms->trustedCerts.certificates();
QList<CRL> crl_list = cms->trustedCerts.crls();
for(int n = 0; n < cert_list.count(); ++n)
{
//printf("trusted: [%s]\n", qPrintable(cert_list[n].commonName()));
const MyCertContext *cc = static_cast<const MyCertContext *>(cert_list[n].context());
X509 *x = cc->item.cert;
//CRYPTO_add(&x->references, 1, CRYPTO_LOCK_X509);
X509_STORE_add_cert(store, x);
}
for(int n = 0; n < crl_list.count(); ++n)
{
const MyCRLContext *cc = static_cast<const MyCRLContext *>(crl_list[n].context());
X509_CRL *x = cc->item.crl;
//CRYPTO_add(&x->references, 1, CRYPTO_LOCK_X509_CRL);
X509_STORE_add_crl(store, x);
}
// add these crls also
crl_list = untrusted_crls;
for(int n = 0; n < crl_list.count(); ++n)
{
const MyCRLContext *cc = static_cast<const MyCRLContext *>(crl_list[n].context());
X509_CRL *x = cc->item.crl;
//CRYPTO_add(&x->references, 1, CRYPTO_LOCK_X509_CRL);
X509_STORE_add_crl(store, x);
}
int ret;
if(!sig.isEmpty()) {
// Detached signMode
bi = BIO_new(BIO_s_mem());
BIO_write(bi, in.data(), in.size());
ret = PKCS7_verify(p7, other_certs, store, bi, NULL, 0);
BIO_free(bi);
} else {
ret = PKCS7_verify(p7, other_certs, store, NULL, out, 0);
// qDebug() << "Verify: " << ret;
}
//if(!ret)
// ERR_print_errors_fp(stdout);
sk_X509_pop_free(other_certs, X509_free);
X509_STORE_free(store);
PKCS7_free(p7);
ver_ret = ret;
// TODO
QMetaObject::invokeMethod(this, "updated", Qt::QueuedConnection);
}
else if(op == Decrypt)
{
bool ok = false;
for(int n = 0; n < cms->privateKeys.count(); ++n)
{
CertificateChain chain = cms->privateKeys[n].x509CertificateChain();
Certificate cert = chain.primary();
PrivateKey key = cms->privateKeys[n].x509PrivateKey();
MyCertContext *cc = static_cast<MyCertContext *>(cert.context());
MyPKeyContext *kc = static_cast<MyPKeyContext *>(key.context());
X509 *cx = cc->item.cert;
EVP_PKEY *kx = kc->get_pkey();
BIO *bi = BIO_new(BIO_s_mem());
BIO_write(bi, in.data(), in.size());
PKCS7 *p7 = d2i_PKCS7_bio(bi, NULL);
BIO_free(bi);
if(!p7)
{
// TODO
printf("bad1\n");
return;
}
BIO *bo = BIO_new(BIO_s_mem());
int ret = PKCS7_decrypt(p7, kx, cx, bo, 0);
PKCS7_free(p7);
if(!ret)
continue;
ok = true;
out = bio2ba(bo);
break;
}
if(!ok)
{
// TODO
printf("bad2\n");
return;
}
}
}
bool finished() const override
{
return _finished;
}
bool waitForFinished(int msecs) override
{
// TODO
Q_UNUSED(msecs);
if(thread)
{
thread->wait();
getresults();
}
return true;
}
bool success() const override
{
// TODO
return true;
}
SecureMessage::Error errorCode() const override
{
// TODO
return SecureMessage::ErrorUnknown;
}
QByteArray signature() const override
{
return sig;
}
QString hashName() const override
{
// TODO
return "sha1";
}
SecureMessageSignatureList signers() const override
{
// only report signers for verify
if(op != Verify)
return SecureMessageSignatureList();
SecureMessageKey key;
if(!signerChain.isEmpty())
key.setX509CertificateChain(signerChain);
// TODO/FIXME !!! InvalidSignature might be used here even
// if the signature is just fine, and the key is invalid
// (we need to use InvalidKey instead).
Validity vr = ErrorValidityUnknown;
if(!signerChain.isEmpty())
vr = signerChain.validate(cms->trustedCerts, cms->untrustedCerts.crls());
SecureMessageSignature::IdentityResult ir;
if(vr == ValidityGood)
ir = SecureMessageSignature::Valid;
else
ir = SecureMessageSignature::InvalidKey;
if(!ver_ret)
ir = SecureMessageSignature::InvalidSignature;
SecureMessageSignature s(ir, vr, key, QDateTime::currentDateTime());
// TODO
return SecureMessageSignatureList() << s;
}
void getresults()
{
sig = thread->sig;
out = thread->out;
}
private Q_SLOTS:
void thread_finished()
{
getresults();
emit updated();
}
};
MessageContext *CMSContext::createMessage()
{
return new MyMessageContext(this, provider());
}
class opensslCipherContext : public CipherContext
{
Q_OBJECT
public:
opensslCipherContext(const EVP_CIPHER *algorithm, const int pad, Provider *p, const QString &type) : CipherContext(p, type)
{
m_cryptoAlgorithm = algorithm;
m_context = EVP_CIPHER_CTX_new();
EVP_CIPHER_CTX_init(m_context);
m_pad = pad;
m_type = type;
}
opensslCipherContext(const opensslCipherContext &other)
: CipherContext(other)
{
m_cryptoAlgorithm = other.m_cryptoAlgorithm;
m_context = EVP_CIPHER_CTX_new();
EVP_CIPHER_CTX_copy(m_context, other.m_context);
m_direction = other.m_direction;
m_pad = other.m_pad;
m_type = other.m_type;
m_tag = other.m_tag;
}
~opensslCipherContext()
{
EVP_CIPHER_CTX_cleanup(m_context);
EVP_CIPHER_CTX_free(m_context);
}
void setup(Direction dir,
const SymmetricKey &key,
const InitializationVector &iv,
const AuthTag &tag) override
{
m_tag = tag;
m_direction = dir;
if ( ( m_cryptoAlgorithm == EVP_des_ede3() ) && (key.size() == 16) ) {
// this is really a two key version of triple DES.
m_cryptoAlgorithm = EVP_des_ede();
}
if (Encode == m_direction) {
EVP_EncryptInit_ex(m_context, m_cryptoAlgorithm, 0, 0, 0);
EVP_CIPHER_CTX_set_key_length(m_context, key.size());
if (m_type.endsWith("gcm") || m_type.endsWith("ccm")) {
int parameter = m_type.endsWith("gcm") ? EVP_CTRL_GCM_SET_IVLEN : EVP_CTRL_CCM_SET_IVLEN;
EVP_CIPHER_CTX_ctrl(m_context, parameter, iv.size(), NULL);
}
EVP_EncryptInit_ex(m_context, 0, 0,
(const unsigned char*)(key.data()),
(const unsigned char*)(iv.data()));
} else {
EVP_DecryptInit_ex(m_context, m_cryptoAlgorithm, 0, 0, 0);
EVP_CIPHER_CTX_set_key_length(m_context, key.size());
if (m_type.endsWith("gcm") || m_type.endsWith("ccm")) {
int parameter = m_type.endsWith("gcm") ? EVP_CTRL_GCM_SET_IVLEN : EVP_CTRL_CCM_SET_IVLEN;
EVP_CIPHER_CTX_ctrl(m_context, parameter, iv.size(), NULL);
}
EVP_DecryptInit_ex(m_context, 0, 0,
(const unsigned char*)(key.data()),
(const unsigned char*)(iv.data()));
}
EVP_CIPHER_CTX_set_padding(m_context, m_pad);
}
Provider::Context *clone() const override
{
return new opensslCipherContext( *this );
}
int blockSize() const override
{
return EVP_CIPHER_CTX_block_size(m_context);
}
AuthTag tag() const override
{
return m_tag;
}
bool update(const SecureArray &in, SecureArray *out) override
{
// This works around a problem in OpenSSL, where it asserts if
// there is nothing to encrypt.
if ( 0 == in.size() )
return true;
out->resize(in.size()+blockSize());
int resultLength;
if (Encode == m_direction) {
if (0 == EVP_EncryptUpdate(m_context,
(unsigned char*)out->data(),
&resultLength,
(unsigned char*)in.data(),
in.size())) {
return false;
}
} else {
if (0 == EVP_DecryptUpdate(m_context,
(unsigned char*)out->data(),
&resultLength,
(unsigned char*)in.data(),
in.size())) {
return false;
}
}
out->resize(resultLength);
return true;
}
bool final(SecureArray *out) override
{
out->resize(blockSize());
int resultLength;
if (Encode == m_direction) {
if (0 == EVP_EncryptFinal_ex(m_context,
(unsigned char*)out->data(),
&resultLength)) {
return false;
}
if (m_tag.size() && (m_type.endsWith("gcm") || m_type.endsWith("ccm"))) {
int parameter = m_type.endsWith("gcm") ? EVP_CTRL_GCM_GET_TAG : EVP_CTRL_CCM_GET_TAG;
if (0 == EVP_CIPHER_CTX_ctrl(m_context, parameter, m_tag.size(), (unsigned char*)m_tag.data())) {
return false;
}
}
} else {
if (m_tag.size() && (m_type.endsWith("gcm") || m_type.endsWith("ccm"))) {
int parameter = m_type.endsWith("gcm") ? EVP_CTRL_GCM_SET_TAG : EVP_CTRL_CCM_SET_TAG;
if (0 == EVP_CIPHER_CTX_ctrl(m_context, parameter, m_tag.size(), m_tag.data())) {
return false;
}
}
if (0 == EVP_DecryptFinal_ex(m_context,
(unsigned char*)out->data(),
&resultLength)) {
return false;
}
}
out->resize(resultLength);
return true;
}
// Change cipher names
KeyLength keyLength() const override
{
if (m_type.left(4) == "des-") {
return KeyLength( 8, 8, 1);
} else if (m_type.left(6) == "aes128") {
return KeyLength( 16, 16, 1);
} else if (m_type.left(6) == "aes192") {
return KeyLength( 24, 24, 1);
} else if (m_type.left(6) == "aes256") {
return KeyLength( 32, 32, 1);
} else if (m_type.left(5) == "cast5") {
return KeyLength( 5, 16, 1);
} else if (m_type.left(8) == "blowfish") {
// Don't know - TODO
return KeyLength( 1, 32, 1);
} else if (m_type.left(9) == "tripledes") {
return KeyLength( 16, 24, 1);
} else {
return KeyLength( 0, 1, 1);
}
}
protected:
EVP_CIPHER_CTX *m_context;
const EVP_CIPHER *m_cryptoAlgorithm;
Direction m_direction;
int m_pad;
QString m_type;
AuthTag m_tag;
};
static QStringList all_hash_types()
{
QStringList list;
list += "sha1";
#ifdef HAVE_OPENSSL_SHA0
list += "sha0";
#endif
list += "ripemd160";
#ifdef HAVE_OPENSSL_MD2
list += "md2";
#endif
list += "md4";
list += "md5";
#ifdef SHA224_DIGEST_LENGTH
list += "sha224";
#endif
#ifdef SHA256_DIGEST_LENGTH
list += "sha256";
#endif
#ifdef SHA384_DIGEST_LENGTH
list += "sha384";
#endif
#ifdef SHA512_DIGEST_LENGTH
list += "sha512";
#endif
#ifdef OBJ_whirlpool
list += "whirlpool";
#endif
return list;
}
static QStringList all_cipher_types()
{
QStringList list;
list += "aes128-ecb";
list += "aes128-cfb";
list += "aes128-cbc";
list += "aes128-cbc-pkcs7";
list += "aes128-ofb";
#ifdef HAVE_OPENSSL_AES_CTR
list += "aes128-ctr";
#endif
#ifdef HAVE_OPENSSL_AES_GCM
list += "aes128-gcm";
#endif
#ifdef HAVE_OPENSSL_AES_CCM
list += "aes128-ccm";
#endif
list += "aes192-ecb";
list += "aes192-cfb";
list += "aes192-cbc";
list += "aes192-cbc-pkcs7";
list += "aes192-ofb";
#ifdef HAVE_OPENSSL_AES_CTR
list += "aes192-ctr";
#endif
#ifdef HAVE_OPENSSL_AES_GCM
list += "aes192-gcm";
#endif
#ifdef HAVE_OPENSSL_AES_CCM
list += "aes192-ccm";
#endif
list += "aes256-ecb";
list += "aes256-cbc";
list += "aes256-cbc-pkcs7";
list += "aes256-cfb";
list += "aes256-ofb";
#ifdef HAVE_OPENSSL_AES_CTR
list += "aes256-ctr";
#endif
#ifdef HAVE_OPENSSL_AES_GCM
list += "aes256-gcm";
#endif
#ifdef HAVE_OPENSSL_AES_CCM
list += "aes256-ccm";
#endif
list += "blowfish-ecb";
list += "blowfish-cbc-pkcs7";
list += "blowfish-cbc";
list += "blowfish-cfb";
list += "blowfish-ofb";
list += "tripledes-ecb";
list += "tripledes-cbc";
list += "des-ecb";
list += "des-ecb-pkcs7";
list += "des-cbc";
list += "des-cbc-pkcs7";
list += "des-cfb";
list += "des-ofb";
list += "cast5-ecb";
list += "cast5-cbc";
list += "cast5-cbc-pkcs7";
list += "cast5-cfb";
list += "cast5-ofb";
return list;
}
static QStringList all_mac_types()
{
QStringList list;
list += "hmac(md5)";
list += "hmac(sha1)";
#ifdef SHA224_DIGEST_LENGTH
list += "hmac(sha224)";
#endif
#ifdef SHA256_DIGEST_LENGTH
list += "hmac(sha256)";
#endif
#ifdef SHA384_DIGEST_LENGTH
list += "hmac(sha384)";
#endif
#ifdef SHA512_DIGEST_LENGTH
list += "hmac(sha512)";
#endif
list += "hmac(ripemd160)";
return list;
}
class opensslInfoContext : public InfoContext
{
Q_OBJECT
public:
opensslInfoContext(Provider *p) : InfoContext(p)
{
}
Provider::Context *clone() const override
{
return new opensslInfoContext(*this);
}
QStringList supportedHashTypes() const override
{
return all_hash_types();
}
QStringList supportedCipherTypes() const override
{
return all_cipher_types();
}
QStringList supportedMACTypes() const override
{
return all_mac_types();
}
};
class opensslRandomContext : public RandomContext
{
Q_OBJECT
public:
opensslRandomContext(QCA::Provider *p) : RandomContext(p)
{
}
Context *clone() const override
{
return new opensslRandomContext(*this);
}
QCA::SecureArray nextBytes(int size) override
{
QCA::SecureArray buf(size);
int r;
// FIXME: loop while we don't have enough random bytes.
while (true) {
r = RAND_bytes((unsigned char*)(buf.data()), size);
if (r == 1) break; // success
}
return buf;
}
};
}
using namespace opensslQCAPlugin;
class opensslProvider : public Provider
{
public:
bool openssl_initted;
opensslProvider()
{
openssl_initted = false;
}
void init() override
{
OpenSSL_add_all_algorithms();
ERR_load_crypto_strings();
// seed the RNG if it's not seeded yet
if (RAND_status() == 0) {
qsrand(time(NULL));
char buf[128];
for(int n = 0; n < 128; ++n)
buf[n] = qrand();
RAND_seed(buf, 128);
}
openssl_initted = true;
}
~opensslProvider()
{
// FIXME: ? for now we never deinit, in case other libs/code
// are using openssl
/*if(!openssl_initted)
return;
// todo: any other shutdown?
EVP_cleanup();
//ENGINE_cleanup();
CRYPTO_cleanup_all_ex_data();
ERR_remove_state(0);
ERR_free_strings();*/
}
int qcaVersion() const override
{
return QCA_VERSION;
}
QString name() const override
{
return "qca-ossl";
}
QString credit() const override
{
return QString(
"This product includes cryptographic software "
"written by Eric Young (eay@cryptsoft.com)");
}
QStringList features() const override
{
QStringList list;
list += "random";
list += all_hash_types();
list += all_mac_types();
list += all_cipher_types();
#ifdef HAVE_OPENSSL_MD2
list += "pbkdf1(md2)";
#endif
list += "pbkdf1(sha1)";
list += "pbkdf2(sha1)";
#ifdef OSSL_110
list += "hkdf(sha256)";
#endif
list += "pkey";
list += "dlgroup";
list += "rsa";
list += "dsa";
list += "dh";
list += "cert";
list += "csr";
list += "crl";
list += "certcollection";
list += "pkcs12";
list += "tls";
list += "cms";
list += "ca";
return list;
}
Context *createContext(const QString &type) override
{
//OpenSSL_add_all_digests();
if ( type == "random" )
return new opensslRandomContext(this);
else if ( type == "info" )
return new opensslInfoContext(this);
else if ( type == "sha1" )
return new opensslHashContext( EVP_sha1(), this, type);
#ifdef HAVE_OPENSSL_SHA0
else if ( type == "sha0" )
return new opensslHashContext( EVP_sha(), this, type);
#endif
else if ( type == "ripemd160" )
return new opensslHashContext( EVP_ripemd160(), this, type);
#ifdef HAVE_OPENSSL_MD2
else if ( type == "md2" )
return new opensslHashContext( EVP_md2(), this, type);
#endif
else if ( type == "md4" )
return new opensslHashContext( EVP_md4(), this, type);
else if ( type == "md5" )
return new opensslHashContext( EVP_md5(), this, type);
#ifdef SHA224_DIGEST_LENGTH
else if ( type == "sha224" )
return new opensslHashContext( EVP_sha224(), this, type);
#endif
#ifdef SHA256_DIGEST_LENGTH
else if ( type == "sha256" )
return new opensslHashContext( EVP_sha256(), this, type);
#endif
#ifdef SHA384_DIGEST_LENGTH
else if ( type == "sha384" )
return new opensslHashContext( EVP_sha384(), this, type);
#endif
#ifdef SHA512_DIGEST_LENGTH
else if ( type == "sha512" )
return new opensslHashContext( EVP_sha512(), this, type);
#endif
#ifdef OBJ_whirlpool
else if ( type == "whirlpool" )
return new opensslHashContext( EVP_whirlpool(), this, type);
#endif
else if ( type == "pbkdf1(sha1)" )
return new opensslPbkdf1Context( EVP_sha1(), this, type );
#ifdef HAVE_OPENSSL_MD2
else if ( type == "pbkdf1(md2)" )
return new opensslPbkdf1Context( EVP_md2(), this, type );
#endif
else if ( type == "pbkdf2(sha1)" )
return new opensslPbkdf2Context( this, type );
#ifdef OSSL_110
else if ( type == "hkdf(sha256)" )
return new opensslHkdfContext( this, type );
#endif
else if ( type == "hmac(md5)" )
return new opensslHMACContext( EVP_md5(), this, type );
else if ( type == "hmac(sha1)" )
return new opensslHMACContext( EVP_sha1(),this, type );
#ifdef SHA224_DIGEST_LENGTH
else if ( type == "hmac(sha224)" )
return new opensslHMACContext( EVP_sha224(), this, type);
#endif
#ifdef SHA256_DIGEST_LENGTH
else if ( type == "hmac(sha256)" )
return new opensslHMACContext( EVP_sha256(), this, type);
#endif
#ifdef SHA384_DIGEST_LENGTH
else if ( type == "hmac(sha384)" )
return new opensslHMACContext( EVP_sha384(), this, type);
#endif
#ifdef SHA512_DIGEST_LENGTH
else if ( type == "hmac(sha512)" )
return new opensslHMACContext( EVP_sha512(), this, type);
#endif
else if ( type == "hmac(ripemd160)" )
return new opensslHMACContext( EVP_ripemd160(), this, type );
else if ( type == "aes128-ecb" )
return new opensslCipherContext( EVP_aes_128_ecb(), 0, this, type);
else if ( type == "aes128-cfb" )
return new opensslCipherContext( EVP_aes_128_cfb(), 0, this, type);
else if ( type == "aes128-cbc" )
return new opensslCipherContext( EVP_aes_128_cbc(), 0, this, type);
else if ( type == "aes128-cbc-pkcs7" )
return new opensslCipherContext( EVP_aes_128_cbc(), 1, this, type);
else if ( type == "aes128-ofb" )
return new opensslCipherContext( EVP_aes_128_ofb(), 0, this, type);
#ifdef HAVE_OPENSSL_AES_CTR
else if ( type == "aes128-ctr" )
return new opensslCipherContext( EVP_aes_128_ctr(), 0, this, type);
#endif
#ifdef HAVE_OPENSSL_AES_GCM
else if ( type == "aes128-gcm" )
return new opensslCipherContext( EVP_aes_128_gcm(), 0, this, type);
#endif
#ifdef HAVE_OPENSSL_AES_CCM
else if ( type == "aes128-ccm" )
return new opensslCipherContext( EVP_aes_128_ccm(), 0, this, type);
#endif
else if ( type == "aes192-ecb" )
return new opensslCipherContext( EVP_aes_192_ecb(), 0, this, type);
else if ( type == "aes192-cfb" )
return new opensslCipherContext( EVP_aes_192_cfb(), 0, this, type);
else if ( type == "aes192-cbc" )
return new opensslCipherContext( EVP_aes_192_cbc(), 0, this, type);
else if ( type == "aes192-cbc-pkcs7" )
return new opensslCipherContext( EVP_aes_192_cbc(), 1, this, type);
else if ( type == "aes192-ofb" )
return new opensslCipherContext( EVP_aes_192_ofb(), 0, this, type);
#ifdef HAVE_OPENSSL_AES_CTR
else if ( type == "aes192-ctr" )
return new opensslCipherContext( EVP_aes_192_ctr(), 0, this, type);
#endif
#ifdef HAVE_OPENSSL_AES_GCM
else if ( type == "aes192-gcm" )
return new opensslCipherContext( EVP_aes_192_gcm(), 0, this, type);
#endif
#ifdef HAVE_OPENSSL_AES_CCM
else if ( type == "aes192-ccm" )
return new opensslCipherContext( EVP_aes_192_ccm(), 0, this, type);
#endif
else if ( type == "aes256-ecb" )
return new opensslCipherContext( EVP_aes_256_ecb(), 0, this, type);
else if ( type == "aes256-cfb" )
return new opensslCipherContext( EVP_aes_256_cfb(), 0, this, type);
else if ( type == "aes256-cbc" )
return new opensslCipherContext( EVP_aes_256_cbc(), 0, this, type);
else if ( type == "aes256-cbc-pkcs7" )
return new opensslCipherContext( EVP_aes_256_cbc(), 1, this, type);
else if ( type == "aes256-ofb" )
return new opensslCipherContext( EVP_aes_256_ofb(), 0, this, type);
#ifdef HAVE_OPENSSL_AES_CTR
else if ( type == "aes256-ctr" )
return new opensslCipherContext( EVP_aes_256_ctr(), 0, this, type);
#endif
#ifdef HAVE_OPENSSL_AES_GCM
else if ( type == "aes256-gcm" )
return new opensslCipherContext( EVP_aes_256_gcm(), 0, this, type);
#endif
#ifdef HAVE_OPENSSL_AES_CCM
else if ( type == "aes256-ccm" )
return new opensslCipherContext( EVP_aes_256_ccm(), 0, this, type);
#endif
else if ( type == "blowfish-ecb" )
return new opensslCipherContext( EVP_bf_ecb(), 0, this, type);
else if ( type == "blowfish-cfb" )
return new opensslCipherContext( EVP_bf_cfb(), 0, this, type);
else if ( type == "blowfish-ofb" )
return new opensslCipherContext( EVP_bf_ofb(), 0, this, type);
else if ( type == "blowfish-cbc" )
return new opensslCipherContext( EVP_bf_cbc(), 0, this, type);
else if ( type == "blowfish-cbc-pkcs7" )
return new opensslCipherContext( EVP_bf_cbc(), 1, this, type);
else if ( type == "tripledes-ecb" )
return new opensslCipherContext( EVP_des_ede3(), 0, this, type);
else if ( type == "tripledes-cbc" )
return new opensslCipherContext( EVP_des_ede3_cbc(), 0, this, type);
else if ( type == "des-ecb" )
return new opensslCipherContext( EVP_des_ecb(), 0, this, type);
else if ( type == "des-ecb-pkcs7" )
return new opensslCipherContext( EVP_des_ecb(), 1, this, type);
else if ( type == "des-cbc" )
return new opensslCipherContext( EVP_des_cbc(), 0, this, type);
else if ( type == "des-cbc-pkcs7" )
return new opensslCipherContext( EVP_des_cbc(), 1, this, type);
else if ( type == "des-cfb" )
return new opensslCipherContext( EVP_des_cfb(), 0, this, type);
else if ( type == "des-ofb" )
return new opensslCipherContext( EVP_des_ofb(), 0, this, type);
else if ( type == "cast5-ecb" )
return new opensslCipherContext( EVP_cast5_ecb(), 0, this, type);
else if ( type == "cast5-cbc" )
return new opensslCipherContext( EVP_cast5_cbc(), 0, this, type);
else if ( type == "cast5-cbc-pkcs7" )
return new opensslCipherContext( EVP_cast5_cbc(), 1, this, type);
else if ( type == "cast5-cfb" )
return new opensslCipherContext( EVP_cast5_cfb(), 0, this, type);
else if ( type == "cast5-ofb" )
return new opensslCipherContext( EVP_cast5_ofb(), 0, this, type);
else if ( type == "pkey" )
return new MyPKeyContext( this );
else if ( type == "dlgroup" )
return new MyDLGroup( this );
else if ( type == "rsa" )
return new RSAKey( this );
else if ( type == "dsa" )
return new DSAKey( this );
else if ( type == "dh" )
return new DHKey( this );
else if ( type == "cert" )
return new MyCertContext( this );
else if ( type == "csr" )
return new MyCSRContext( this );
else if ( type == "crl" )
return new MyCRLContext( this );
else if ( type == "certcollection" )
return new MyCertCollectionContext( this );
else if ( type == "pkcs12" )
return new MyPKCS12Context( this );
else if ( type == "tls" )
return new MyTLSContext( this );
else if ( type == "cms" )
return new CMSContext( this );
else if ( type == "ca" )
return new MyCAContext( this );
return 0;
}
};
class opensslPlugin : public QObject, public QCAPlugin
{
Q_OBJECT
Q_PLUGIN_METADATA(IID "com.affinix.qca.Plugin/1.0")
Q_INTERFACES(QCAPlugin)
public:
Provider *createProvider() override { return new opensslProvider; }
};
#include "qca-ossl.moc"