2013-07-30 17:55:52 -04:00

600 lines
15 KiB
C++

/*
The MIT License (MIT)
Copyright (c) 2013 Andrew Ruef
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <list>
#include "parse.h"
#include "nt-headers.h"
using namespace std;
using namespace boost;
struct section {
string sectionName;
::uint32_t sectionBase;
bounded_buffer *sectionData;
image_section_header sec;
};
struct importent {
RVA addr;
string symbolName;
string moduleName;
};
struct reloc {
VA shiftedAddr;
reloc_type type;
};
struct parsed_pe_internal {
list<section> secs;
list<importent> imports;
list<reloc> relocs;
};
bool getSecForRVA(list<section> &secs, RVA v, section &sec) {
for(list<section>::iterator it = secs.begin(), e = secs.end();
it != e;
++it)
{
section s = *it;
::uint32_t low = s.sectionBase;
::uint32_t high = low + s.sec.Misc.VirtualSize;
if(v >= low && v < high) {
sec = s;
return true;
}
}
return false;
}
bool getSections( bounded_buffer *b,
bounded_buffer *fileBegin,
nt_header_32 &nthdr,
list<section> &secs) {
if(b == NULL) {
return false;
}
//get each of the sections...
for(::uint32_t i = 0; i < nthdr.FileHeader.NumberOfSections; i++) {
image_section_header curSec;
::uint32_t o = i*sizeof(image_section_header);
for(::uint32_t k = 0; k < NT_SHORT_NAME_LEN; k++) {
readByte(b, o+k, curSec.Name[k]);
}
#define READ_WORD(x) \
if(readWord(b, o+_offset(image_section_header, x), curSec.x) == false) { \
return false; \
}
#define READ_DWORD(x) \
if(readDword(b, o+_offset(image_section_header, x), curSec.x) == false) { \
return false; \
}
READ_DWORD(Misc.VirtualSize);
READ_DWORD(VirtualAddress);
READ_DWORD(SizeOfRawData);
READ_DWORD(PointerToRawData);
READ_DWORD(PointerToRelocations);
READ_DWORD(PointerToLinenumbers);
READ_WORD(NumberOfRelocations);
READ_WORD(NumberOfLinenumbers);
READ_DWORD(Characteristics);
#undef READ_WORD
#undef READ_DWORD
//now we have the section header information, so fill in a section
//object appropriately
section thisSec;
for(::uint32_t i = 0; i < NT_SHORT_NAME_LEN; i++) {
::uint8_t c = curSec.Name[i];
if(c == 0) {
break;
}
thisSec.sectionName.push_back((char)c);
}
thisSec.sectionBase = nthdr.OptionalHeader.ImageBase+curSec.VirtualAddress;
thisSec.sec = curSec;
::uint32_t lowOff = curSec.PointerToRawData;
::uint32_t highOff = lowOff+curSec.SizeOfRawData;
thisSec.sectionData = splitBuffer(fileBegin, lowOff, highOff);
secs.push_back(thisSec);
}
return true;
}
bool readOptionalHeader(bounded_buffer *b, optional_header_32 &header) {
#define READ_WORD(x) \
if(readWord(b, _offset(optional_header_32, x), header.x) == false) { \
return false; \
}
#define READ_DWORD(x) \
if(readDword(b, _offset(optional_header_32, x), header.x) == false) { \
return false; \
}
#define READ_BYTE(x) \
if(readByte(b, _offset(optional_header_32, x), header.x) == false) { \
return false; \
}
READ_WORD(Magic);
if(header.Magic != NT_OPTIONAL_32_MAGIC) {
return false;
}
READ_BYTE(MajorLinkerVersion);
READ_BYTE(MinorLinkerVersion);
READ_DWORD(SizeOfCode);
READ_DWORD(SizeOfInitializedData);
READ_DWORD(SizeOfUninitializedData);
READ_DWORD(AddressOfEntryPoint);
READ_DWORD(BaseOfCode);
READ_DWORD(BaseOfData);
READ_DWORD(ImageBase);
READ_DWORD(SectionAlignment);
READ_DWORD(FileAlignment);
READ_WORD(MajorOperatingSystemVersion);
READ_WORD(MinorOperatingSystemVersion);
READ_WORD(MajorImageVersion);
READ_WORD(MinorImageVersion);
READ_WORD(MajorSubsystemVersion);
READ_WORD(MinorSubsystemVersion);
READ_DWORD(Win32VersionValue);
READ_DWORD(SizeOfImage);
READ_DWORD(SizeOfHeaders);
READ_DWORD(CheckSum);
READ_WORD(Subsystem);
READ_WORD(DllCharacteristics);
READ_DWORD(SizeOfStackReserve);
READ_DWORD(SizeOfStackCommit);
READ_DWORD(SizeOfHeapReserve);
READ_DWORD(SizeOfHeapCommit);
READ_DWORD(LoaderFlags);
READ_DWORD(NumberOfRvaAndSizes);
#undef READ_WORD
#undef READ_DWORD
#undef READ_BYTE
for(::uint32_t i = 0; i < header.NumberOfRvaAndSizes; i++) {
::uint32_t c = (i*sizeof(data_directory));
c+= _offset(optional_header_32, DataDirectory[0]);
::uint32_t o;
o = c + _offset(data_directory, VirtualAddress);
if(readDword(b, o, header.DataDirectory[i].VirtualAddress) == false) {
return false;
}
o = c + _offset(data_directory, Size);
if(readDword(b, o, header.DataDirectory[i].Size) == false) {
return false;
}
}
return true;
}
bool readFileHeader(bounded_buffer *b, file_header &header) {
#define READ_WORD(x) \
if(readWord(b, _offset(file_header, x), header.x) == false) { \
return false; \
}
#define READ_DWORD(x) \
if(readDword(b, _offset(file_header, x), header.x) == false) { \
return false; \
}
READ_WORD(Machine);
READ_WORD(NumberOfSections);
READ_DWORD(TimeDateStamp);
READ_DWORD(PointerToSymbolTable);
READ_DWORD(NumberOfSymbols);
READ_WORD(SizeOfOptionalHeader);
READ_WORD(Characteristics);
#undef READ_DWORD
#undef READ_WORD
return true;
}
bool readNtHeader(bounded_buffer *b, nt_header_32 &header) {
if(b == NULL) {
return false;
}
::uint32_t pe_magic;
::uint32_t curOffset =0;
if(readDword(b, curOffset, pe_magic) == false || pe_magic != NT_MAGIC) {
return false;
}
header.Signature = pe_magic;
bounded_buffer *fhb =
splitBuffer(b, _offset(nt_header_32, FileHeader), b->bufLen);
if(fhb == NULL) {
return false;
}
if(readFileHeader(fhb, header.FileHeader) == false) {
deleteBuffer(fhb);
return false;
}
bounded_buffer *ohb =
splitBuffer(b, _offset(nt_header_32, OptionalHeader), b->bufLen);
if(ohb == NULL) {
deleteBuffer(fhb);
return false;
}
if(readOptionalHeader(ohb, header.OptionalHeader) == false) {
deleteBuffer(ohb);
deleteBuffer(fhb);
return false;
}
deleteBuffer(ohb);
deleteBuffer(fhb);
return true;
}
bool getHeader(bounded_buffer *file, pe_header &p, bounded_buffer *&rem) {
if(file == NULL) {
return false;
}
//start by reading MZ
::uint16_t tmp = 0;
::uint32_t curOffset = 0;
readWord(file, curOffset, tmp);
if(tmp != MZ_MAGIC) {
return false;
}
//read the offset to the NT headers
::uint32_t offset;
if(readDword(file, _offset(dos_header, e_lfanew), offset) == false) {
return false;
}
curOffset += offset;
//now, we can read out the fields of the NT headers
bounded_buffer *ntBuf = splitBuffer(file, curOffset, file->bufLen);
if(readNtHeader(ntBuf, p.nt) == false) {
return false;
}
//update 'rem' to point to the space after the header
rem = splitBuffer(ntBuf, sizeof(nt_header_32), ntBuf->bufLen);
deleteBuffer(ntBuf);
return true;
}
parsed_pe *ParsePEFromFile(const char *filePath) {
//first, create a new parsed_pe structure
parsed_pe *p = new parsed_pe();
if(p == NULL) {
return NULL;
}
//make a new buffer object to hold just our file data
p->fileBuffer = readFileToFileBuffer(filePath);
if(p->fileBuffer == NULL) {
delete p;
return NULL;
}
p->internal = new parsed_pe_internal();
if(p->internal == NULL) {
deleteBuffer(p->fileBuffer);
delete p;
return NULL;
}
//get header information
bounded_buffer *remaining = NULL;
if(getHeader(p->fileBuffer, p->peHeader, remaining) == false) {
deleteBuffer(p->fileBuffer);
delete p;
return NULL;
}
bounded_buffer *file = p->fileBuffer;
if(getSections(remaining, file, p->peHeader.nt, p->internal->secs) == false) {
deleteBuffer(remaining);
deleteBuffer(p->fileBuffer);
delete p;
return NULL;
}
//get exports
data_directory exportDir =
p->peHeader.nt.OptionalHeader.DataDirectory[DIR_EXPORT];
//get relocations, if exist
data_directory relocDir =
p->peHeader.nt.OptionalHeader.DataDirectory[DIR_BASERELOC];
if(relocDir.Size != 0) {
section d;
::uint32_t rvaAddr =
relocDir.VirtualAddress + p->peHeader.nt.OptionalHeader.ImageBase;
if(getSecForRVA(p->internal->secs, rvaAddr, d) == false) {
deleteBuffer(remaining);
deleteBuffer(p->fileBuffer);
delete p;
return NULL;
}
::uint32_t rvaofft = rvaAddr - d.sectionBase;
::uint32_t pageRva;
::uint32_t blockSize;
if(readDword( d.sectionData,
rvaofft+_offset(reloc_block, PageRVA),
pageRva) == false)
{
return NULL;
}
if(readDword( d.sectionData,
rvaofft+_offset(reloc_block, BlockSize),
blockSize) == false)
{
return NULL;
}
//iter over all of the RVA blocks
::uint32_t blockCount = blockSize/sizeof(::uint16_t);
rvaofft += sizeof(reloc_block);
while(blockCount != 0) {
::uint16_t block;
::uint8_t type;
::uint16_t offset;
if(readWord(d.sectionData, rvaofft, block) == false) {
return NULL;
}
//mask out the type and assign
type = block >> 12;
//mask out the offset and assign
offset = block & ~0xf000;
//produce the VA of the relocation
::uint32_t relocVA = pageRva + offset +
p->peHeader.nt.OptionalHeader.ImageBase;
//store in our list
reloc r;
r.shiftedAddr = relocVA;
r.type = (reloc_type)type;
p->internal->relocs.push_back(r);
blockCount--;
rvaofft += sizeof(::uint16_t);
}
}
//get imports
data_directory importDir =
p->peHeader.nt.OptionalHeader.DataDirectory[DIR_IMPORT];
if(importDir.Size != 0) {
//get section for the RVA in importDir
section c;
::uint32_t addr =
importDir.VirtualAddress + p->peHeader.nt.OptionalHeader.ImageBase;
if(getSecForRVA(p->internal->secs, addr, c) == false) {
deleteBuffer(remaining);
deleteBuffer(p->fileBuffer);
delete p;
return NULL;
}
//get import directory from this section
::uint32_t offt = addr - c.sectionBase;
do {
#define READ_DWORD(x) \
if(readDword(c.sectionData, offt+_offset(import_dir_entry, x), curEnt.x) == false) { \
return NULL; \
}
//read each directory entry out
import_dir_entry curEnt;
READ_DWORD(LookupTableRVA);
READ_DWORD(TimeStamp);
READ_DWORD(ForwarderChain);
READ_DWORD(NameRVA);
READ_DWORD(AddressRVA);
//are all the fields in curEnt null? then we break
if( curEnt.LookupTableRVA == 0 &&
curEnt.NameRVA == 0 &&
curEnt.AddressRVA == 0) {
break;
}
//then, try and get the name of this particular module...
::uint32_t name =
curEnt.NameRVA + p->peHeader.nt.OptionalHeader.ImageBase;
section nameSec;
if(getSecForRVA(p->internal->secs, name, nameSec) == false) {
return NULL;
}
::uint32_t nameOff = name - nameSec.sectionBase;
string modName;
::uint8_t c;
do {
if(readByte(nameSec.sectionData, nameOff, c) == false) {
return NULL;
}
if(c == 0) {
break;
}
modName.push_back(c);
nameOff++;
}while(true);
//then, try and get all of the sub-symbols
::uint32_t lookupRVA =
curEnt.LookupTableRVA + p->peHeader.nt.OptionalHeader.ImageBase;
section lookupSec;
if(getSecForRVA(p->internal->secs, lookupRVA, lookupSec) == false) {
return NULL;
}
::uint32_t lookupOff = lookupRVA - lookupSec.sectionBase;
do {
::uint32_t val;
if(readDword(lookupSec.sectionData, lookupOff, val) == false) {
return NULL;
}
if(val == 0) {
break;
}
//check and see if high bit is set
if(val >> 31 == 0) {
//import by name
string symName;
section symNameSec;
::uint32_t valRVA = val + p->peHeader.nt.OptionalHeader.ImageBase;
if(getSecForRVA(p->internal->secs, valRVA, symNameSec) == false) {
return NULL;
}
::uint32_t nameOff = valRVA - symNameSec.sectionBase;
nameOff += sizeof(::uint16_t);
do {
::uint8_t d;
if(readByte(symNameSec.sectionData, nameOff, d) == false) {
return NULL;
}
if(d == 0) {
break;
}
symName.push_back(d);
nameOff++;
} while(true);
//okay now we know the pair... add it
importent ent;
ent.addr =
curEnt.AddressRVA + p->peHeader.nt.OptionalHeader.ImageBase;
ent.symbolName = symName;
ent.moduleName = modName;
p->internal->imports.push_back(ent);
} else {
//import by ordinal
}
lookupOff += sizeof(::uint32_t);
} while(true);
offt += sizeof(import_dir_entry);
} while(true);
}
deleteBuffer(remaining);
#undef READ_DWORD
return p;
}
void DestructParsedPE(parsed_pe *p) {
delete p;
return;
}
//iterate over the imports by RVA and string
void IterImpRVAString(parsed_pe *pe, iterRVAStr cb, void *cbd) {
list<importent> &l = pe->internal->imports;
for(list<importent>::iterator it = l.begin(), e = l.end(); it != e; ++it) {
importent i = *it;
cb(cbd, i.addr, i.moduleName, i.symbolName);
}
return;
}
//iterate over relocations in the PE file
void IterRelocs(parsed_pe *pe, iterReloc cb, void *cbd) {
return;
}
//iterate over the exports by RVA
void IterExpRVA(parsed_pe *pe, iterExp cb, void *cbd) {
return;
}
//iterate over sections
void IterSec(parsed_pe *pe, iterSec cb, void *cbd) {
parsed_pe_internal *pint = pe->internal;
for(list<section>::iterator sit = pint->secs.begin(), e = pint->secs.end();
sit != e;
++sit)
{
section s = *sit;
cb(cbd, s.sectionBase, s.sectionName, s.sectionData);
}
return;
}