mirror of
https://github.com/QuasarApp/openssl.git
synced 2025-05-07 06:59:41 +00:00
853950f7bf
This issue was partially addressed by commit 972c87dfc7e765bd28a4964519c362f0d3a58ca4, which hardened its callee BN_num_bits_word() to avoid leaking the most-significant word of its argument via branching and memory access pattern. The commit message also reported: > There are a few places where BN_num_bits is called on an input where > the bit length is also secret. This does *not* fully resolve those > cases as we still only look at the top word. BN_num_bits() is called directly or indirectly (e.g., through BN_num_bytes() or BN_bn2binpad() ) in various parts of the `crypto/ec` code, notably in all the currently supported implementations of scalar multiplication (in the generic path through ec_scalar_mul_ladder() as well as in dedicated methods like ecp_nistp{224,256,521}.c and ecp_nistz256.c). Under the right conditions, a motivated SCA attacker could retrieve the secret bitlength of a secret nonce through this vulnerability, potentially leading, ultimately, to recover a long-term secret key. With this commit, exclusively for BIGNUMs that are flagged with BN_FLG_CONSTTIME, instead of accessing only bn->top, all the limbs of the BIGNUM are accessed up to bn->dmax and bitwise masking is used to avoid branching. Memory access pattern still leaks bn->dmax, the size of the lazily allocated buffer for representing the BIGNUM, which is inevitable with the current BIGNUM architecture: reading past bn->dmax would be an out-of-bound read. As such, it's the caller responsibility to ensure that bn->dmax does not leak secret information, by explicitly expanding the internal BIGNUM buffer to a public value sufficient to avoid any lazy reallocation while manipulating it: this should be already done at the top level alongside setting the BN_FLG_CONSTTIME. Thanks to David Schrammel and Samuel Weiser for reporting this issue through responsible disclosure. Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de> (Merged from https://github.com/openssl/openssl/pull/9793)
OpenSSL 1.0.2t-dev Copyright (c) 1998-2019 The OpenSSL Project Copyright (c) 1995-1998 Eric A. Young, Tim J. Hudson All rights reserved. DESCRIPTION ----------- The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, fully featured, and Open Source toolkit implementing the Secure Sockets Layer (SSLv3) and Transport Layer Security (TLS) protocols as well as a full-strength general purpose cryptograpic library. The project is managed by a worldwide community of volunteers that use the Internet to communicate, plan, and develop the OpenSSL toolkit and its related documentation. OpenSSL is descended from the SSLeay library developed by Eric A. Young and Tim J. Hudson. The OpenSSL toolkit is licensed under a dual-license (the OpenSSL license plus the SSLeay license), which means that you are free to get and use it for commercial and non-commercial purposes as long as you fulfill the conditions of both licenses. OVERVIEW -------- The OpenSSL toolkit includes: libssl.a: Provides the client and server-side implementations for SSLv3 and TLS. libcrypto.a: Provides general cryptographic and X.509 support needed by SSL/TLS but not logically part of it. openssl: A command line tool that can be used for: Creation of key parameters Creation of X.509 certificates, CSRs and CRLs Calculation of message digests Encryption and decryption SSL/TLS client and server tests Handling of S/MIME signed or encrypted mail And more... INSTALLATION ------------ See the appropriate file: INSTALL Linux, Unix, etc. INSTALL.DJGPP DOS platform with DJGPP INSTALL.NW Netware INSTALL.OS2 OS/2 INSTALL.VMS VMS INSTALL.W32 Windows (32bit) INSTALL.W64 Windows (64bit) INSTALL.WCE Windows CE SUPPORT ------- See the OpenSSL website www.openssl.org for details on how to obtain commercial technical support. If you have any problems with OpenSSL then please take the following steps first: - Download the latest version from the repository to see if the problem has already been addressed - Configure with no-asm - Remove compiler optimisation flags If you wish to report a bug then please include the following information and create an issue on GitHub: - On Unix systems: Self-test report generated by 'make report' - On other systems: OpenSSL version: output of 'openssl version -a' OS Name, Version, Hardware platform Compiler Details (name, version) - Application Details (name, version) - Problem Description (steps that will reproduce the problem, if known) - Stack Traceback (if the application dumps core) Just because something doesn't work the way you expect does not mean it is necessarily a bug in OpenSSL. HOW TO CONTRIBUTE TO OpenSSL ---------------------------- See CONTRIBUTING LEGALITIES ---------- A number of nations restrict the use or export of cryptography. If you are potentially subject to such restrictions you should seek competent professional legal advice before attempting to develop or distribute cryptographic code.
Description
Languages
C
72.8%
Raku
14.7%
Perl
8.3%
Prolog
1.5%
C++
1.2%
Other
1.4%