The functions that check for the provider being runnable are: new, init, final
and dupctx.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12801)
Some modes (e.g., CBC and OFB) update the effective IV with each
block-cipher invocation, making the "IV" stored in the (historically)
EVP_CIPHER_CTX or (current) PROV_CIPHER_CTX distinct from the initial
IV passed in at cipher initialization time. The latter is stored in
the "oiv" (original IV) field, and has historically been accessible
via the EVP_CIPHER_CTX_original_iv() API. The "effective IV" has
also historically been accessible, via both EVP_CIPHER_CTX_iv()
and EVP_CIPHER_CTX_iv_noconst(), the latter of which allows for
*write* access to the internal cipher state. This is particularly
problematic given that provider-internal cipher state need not, in
general, even be accessible from the same address space as libcrypto,
so these APIs are not sustainable in the long term. However, it still
remains necessary to provide access to the contents of the "IV state"
(e.g., when serializing cipher state for in-kernel TLS); a subsequent
reinitialization of a cipher context using the "IV state" as the
input IV will be able to resume processing of data in a compatible
manner.
This problem was introduced in commit
089cb623be76b88a1eea6fcd135101037661bbc3, which effectively caused
all IV queries to return the "original IV", removing access to the
current IV state of the cipher.
These functions for accessing the (even the "original") IV had remained
undocumented for quite some time, presumably due to unease about
exposing the internals of the cipher state in such a manner.
Note that this also as a side effect "fixes" some "bugs" where things
had been referring to the 'iv' field that should have been using the
'oiv' field. It also fixes the EVP_CTRL_GET_IV cipher control,
which was clearly intended to expose the non-original IV, for
use exporting the cipher state into the kernel for kTLS.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Added Algorithm names AES-128-CBC-CTS, AES-192-CBC-CTS and AES-256-CBC-CTS.
CS1, CS2 and CS3 variants are supported.
Only single shot updates are supported.
The cipher returns the mode EVP_CIPH_CBC_MODE (Internally it shares the aes_cbc cipher code). This
would allow existing code that uses AES_CBC to switch to the CTS variant without breaking code that
tests for this mode. Because it shares the aes_cbc code the cts128.c functions could not be used directly.
The cipher returns the flag EVP_CIPH_FLAG_CTS.
EVP_CIPH_FLAG_FIPS & EVP_CIPH_FLAG_NON_FIPS_ALLOW have been deprecated.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12094)
We were not correctly passing the provider ctx down the chain during
initialisation of a new cipher ctx. Instead the provider ctx got set to
NULL.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12288)
The previous commits separated out the TLS CBC padding code in libssl.
Now we can use that code to directly support TLS CBC padding and MAC
removal in provided ciphers.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12288)
The new naming scheme consistently usese the `OSSL_FUNC_` prefix for all
functions which are dispatched between the core and providers.
This change includes in particular all up- and downcalls, i.e., the
dispatched functions passed from core to provider and vice versa.
- OSSL_core_ -> OSSL_FUNC_core_
- OSSL_provider_ -> OSSL_FUNC_core_
For operations and their function dispatch tables, the following convention
is used:
Type | Name (evp_generic_fetch(3)) |
---------------------|-----------------------------------|
operation | OSSL_OP_FOO |
function id | OSSL_FUNC_FOO_FUNCTION_NAME |
function "name" | OSSL_FUNC_foo_function_name |
function typedef | OSSL_FUNC_foo_function_name_fn |
function ptr getter | OSSL_FUNC_foo_function_name |
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12222)
Aes-ecb mode can be optimized by inverleaving cipher operation on
several blocks and loop unrolling. Interleaving needs one ideal
unrolling factor, here we adopt the same factor with aes-cbc,
which is described as below:
If blocks number > 5, select 5 blocks as one iteration,every
loop, decrease the blocks number by 5.
If 3 < left blocks < 5 select 3 blocks as one iteration, every
loop, decrease the block number by 3.
If left blocks < 3, treat them as tail blocks.
Detailed implementation will have a little adjustment for squeezing
code space.
With this way, for small size such as 16 bytes, the performance is
similar as before, but for big size such as 16k bytes, the performance
improves a lot, even reaches to 100%, for some arches such as A57,
the improvement even exceeds 100%. The following table will list the
encryption performance data on aarch64, take a72 and a57 as examples.
Performance value takes the unit of cycles per byte, takes the format
as comparision of values. List them as below:
A72:
Before optimization After optimization Improve
evp-aes-128-ecb@16 17.26538237 16.82663866 2.61%
evp-aes-128-ecb@64 5.50528499 5.222637557 5.41%
evp-aes-128-ecb@256 2.632700213 1.908442892 37.95%
evp-aes-128-ecb@1024 1.876102047 1.078018868 74.03%
evp-aes-128-ecb@8192 1.6550392 0.853982929 93.80%
evp-aes-128-ecb@16384 1.636871283 0.847623957 93.11%
evp-aes-192-ecb@16 17.73104961 17.09692468 3.71%
evp-aes-192-ecb@64 5.78984398 5.418545192 6.85%
evp-aes-192-ecb@256 2.872005308 2.081815274 37.96%
evp-aes-192-ecb@1024 2.083226672 1.25095642 66.53%
evp-aes-192-ecb@8192 1.831992057 0.995916251 83.95%
evp-aes-192-ecb@16384 1.821590009 0.993820525 83.29%
evp-aes-256-ecb@16 18.0606306 17.96963317 0.51%
evp-aes-256-ecb@64 6.19651997 5.762465812 7.53%
evp-aes-256-ecb@256 3.176991394 2.24642538 41.42%
evp-aes-256-ecb@1024 2.385991919 1.396018192 70.91%
evp-aes-256-ecb@8192 2.147862636 1.142222597 88.04%
evp-aes-256-ecb@16384 2.131361787 1.135944617 87.63%
A57:
Before optimization After optimization Improve
evp-aes-128-ecb@16 18.61045121 18.36456218 1.34%
evp-aes-128-ecb@64 6.438628994 5.467959461 17.75%
evp-aes-128-ecb@256 2.957452881 1.97238604 49.94%
evp-aes-128-ecb@1024 2.117096219 1.099665054 92.52%
evp-aes-128-ecb@8192 1.868385973 0.837440804 123.11%
evp-aes-128-ecb@16384 1.853078526 0.822420027 125.32%
evp-aes-192-ecb@16 19.07021756 18.50018552 3.08%
evp-aes-192-ecb@64 6.672351486 5.696088921 17.14%
evp-aes-192-ecb@256 3.260427769 2.131449916 52.97%
evp-aes-192-ecb@1024 2.410522832 1.250529718 92.76%
evp-aes-192-ecb@8192 2.17921605 0.973225504 123.92%
evp-aes-192-ecb@16384 2.162250997 0.95919871 125.42%
evp-aes-256-ecb@16 19.3008384 19.12743654 0.91%
evp-aes-256-ecb@64 6.992950658 5.92149541 18.09%
evp-aes-256-ecb@256 3.576361743 2.287619504 56.34%
evp-aes-256-ecb@1024 2.726671027 1.381267599 97.40%
evp-aes-256-ecb@8192 2.493583657 1.110959913 124.45%
evp-aes-256-ecb@16384 2.473916816 1.099967073 124.91%
Change-Id: Iccd23d972e0d52d22dc093f4c208f69c9d5a0ca7
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10518)
The idea to have all these things in providers/common was viable as
long as the implementations was spread around their main providers.
This is, however, no longer the case, so we move the common blocks
closer to the source that use them.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10564)