Use of the low level DES functions has been informally discouraged for a
long time. We now formally deprecate them.
Applications should instead use the EVP APIs, e.g. EVP_EncryptInit_ex,
EVP_EncryptUpdate, EVP_EncryptFinal_ex, and the equivalently named decrypt
functions.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10858)
Libssl uses the null cipher in certain situations. It should be
converted to a provided cipher.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10865)
These were initially added as internal functions only. However they will
also need to be used by libssl as well. Therefore it make sense to move
them into the public API.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10864)
Use of the low level IDEA functions has been informally discouraged for a
long time. We now formally deprecate them.
Applications should instead use the EVP APIs, e.g. EVP_EncryptInit_ex,
EVP_EncryptUpdate, EVP_EncryptFinal_ex, and the equivalently named decrypt
functions.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10819)
Use of the low level MD5 functions has been informally discouraged for a long
time. We now formally deprecate them.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10791)
Use of the low level RC5 functions has been informally discouraged for a long
time. We now formally deprecate them.
Applications should instead use the EVP APIs, e.g. EVP_EncryptInit_ex,
EVP_EncryptUpdate, EVP_EncryptFinal_ex and the equivalently named decrypt
functions.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10834)
Use of the low level RC4 functions has been informally discouraged for a long
time. We now formally deprecate them.
Applications should instead use the EVP APIs, e.g. EVP_EncryptInit_ex,
EVP_EncryptUpdate, EVP_EncryptFinal_ex and the equivalently named decrypt
functions.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10834)
Use of the low level RC2 functions has been informally discouraged for a
long time. We now formally deprecate them.
Applications should instead use the EVP APIs, e.g. EVP_EncryptInit_ex,
EVP_EncryptUpdate, EVP_EncryptFinal_ex, and the equivalently named decrypt
functions.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10834)
Use of the low level SEED functions has been informally discouraged for a
long time. We now formally deprecate them.
Applications should instead use the EVP APIs, e.g. EVP_EncryptInit_ex,
EVP_EncryptUpdate, EVP_EncryptFinal_ex, and the equivalently named decrypt
functions.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10833)
providers/implementations/ciphers/ciphercommon_gcm_hw.c had an AES
specific GCM update function, while
providers/implementations/ciphers/cipher_aria_gcm_hw.c had the more
general implementation.
This moves them around to have the more general implementation in the
common source, and place the AES specialiation where it belongs.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10783)
Applications should instead use the higher level EVP APIs, e.g.
EVP_Encrypt*() and EVP_Decrypt*().
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10742)
Applications should instead use the higher level EVP APIs, e.g.
EVP_Encrypt*() and EVP_Decrypt*().
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10741)
Applications should instead use the higher level EVP APIs, e.g.
EVP_Encrypt*() and EVP_Decrypt*().
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10740)
A few provider implementations need this to build correctly with a
'no-deprecated' configuration.
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/10766)
Use of the low level AES functions has been informally discouraged for a
long time. We now formally deprecate them.
Applications should instead use the EVP APIs, e.g. EVP_EncryptInit_ex,
EVP_EncryptUpdate, EVP_EncryptFinal_ex, and the equivalently named decrypt
functions.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10580)
Also Add ability for providers to dynamically exclude cipher algorithms.
Cipher algorithms are only returned from providers if their capable() method is either NULL,
or the method returns 1.
This is mainly required for ciphers that only have hardware implementations.
If there is no hardware support, then the algorithm needs to be not available.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10146)
The AES_GCM specialisation was defined in the common cipher header
providers/implementations/include/prov/ciphercommon_gcm.h, when it
should in fact be in a local providers/implementations/ciphers/
header.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10606)
The AES_CCM specialisation was defined in the common cipher header
providers/implementations/include/prov/ciphercommon_ccm.h, when it
should in fact be in a local providers/implementations/ciphers/
header.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10606)
Aes-ecb mode can be optimized by inverleaving cipher operation on
several blocks and loop unrolling. Interleaving needs one ideal
unrolling factor, here we adopt the same factor with aes-cbc,
which is described as below:
If blocks number > 5, select 5 blocks as one iteration,every
loop, decrease the blocks number by 5.
If 3 < left blocks < 5 select 3 blocks as one iteration, every
loop, decrease the block number by 3.
If left blocks < 3, treat them as tail blocks.
Detailed implementation will have a little adjustment for squeezing
code space.
With this way, for small size such as 16 bytes, the performance is
similar as before, but for big size such as 16k bytes, the performance
improves a lot, even reaches to 100%, for some arches such as A57,
the improvement even exceeds 100%. The following table will list the
encryption performance data on aarch64, take a72 and a57 as examples.
Performance value takes the unit of cycles per byte, takes the format
as comparision of values. List them as below:
A72:
Before optimization After optimization Improve
evp-aes-128-ecb@16 17.26538237 16.82663866 2.61%
evp-aes-128-ecb@64 5.50528499 5.222637557 5.41%
evp-aes-128-ecb@256 2.632700213 1.908442892 37.95%
evp-aes-128-ecb@1024 1.876102047 1.078018868 74.03%
evp-aes-128-ecb@8192 1.6550392 0.853982929 93.80%
evp-aes-128-ecb@16384 1.636871283 0.847623957 93.11%
evp-aes-192-ecb@16 17.73104961 17.09692468 3.71%
evp-aes-192-ecb@64 5.78984398 5.418545192 6.85%
evp-aes-192-ecb@256 2.872005308 2.081815274 37.96%
evp-aes-192-ecb@1024 2.083226672 1.25095642 66.53%
evp-aes-192-ecb@8192 1.831992057 0.995916251 83.95%
evp-aes-192-ecb@16384 1.821590009 0.993820525 83.29%
evp-aes-256-ecb@16 18.0606306 17.96963317 0.51%
evp-aes-256-ecb@64 6.19651997 5.762465812 7.53%
evp-aes-256-ecb@256 3.176991394 2.24642538 41.42%
evp-aes-256-ecb@1024 2.385991919 1.396018192 70.91%
evp-aes-256-ecb@8192 2.147862636 1.142222597 88.04%
evp-aes-256-ecb@16384 2.131361787 1.135944617 87.63%
A57:
Before optimization After optimization Improve
evp-aes-128-ecb@16 18.61045121 18.36456218 1.34%
evp-aes-128-ecb@64 6.438628994 5.467959461 17.75%
evp-aes-128-ecb@256 2.957452881 1.97238604 49.94%
evp-aes-128-ecb@1024 2.117096219 1.099665054 92.52%
evp-aes-128-ecb@8192 1.868385973 0.837440804 123.11%
evp-aes-128-ecb@16384 1.853078526 0.822420027 125.32%
evp-aes-192-ecb@16 19.07021756 18.50018552 3.08%
evp-aes-192-ecb@64 6.672351486 5.696088921 17.14%
evp-aes-192-ecb@256 3.260427769 2.131449916 52.97%
evp-aes-192-ecb@1024 2.410522832 1.250529718 92.76%
evp-aes-192-ecb@8192 2.17921605 0.973225504 123.92%
evp-aes-192-ecb@16384 2.162250997 0.95919871 125.42%
evp-aes-256-ecb@16 19.3008384 19.12743654 0.91%
evp-aes-256-ecb@64 6.992950658 5.92149541 18.09%
evp-aes-256-ecb@256 3.576361743 2.287619504 56.34%
evp-aes-256-ecb@1024 2.726671027 1.381267599 97.40%
evp-aes-256-ecb@8192 2.493583657 1.110959913 124.45%
evp-aes-256-ecb@16384 2.473916816 1.099967073 124.91%
Change-Id: Iccd23d972e0d52d22dc093f4c208f69c9d5a0ca7
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10518)
The idea to have all these things in providers/common was viable as
long as the implementations was spread around their main providers.
This is, however, no longer the case, so we move the common blocks
closer to the source that use them.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10564)
If we call EVP_EncryptUpdate/EVP_DecryptUpdate with length 0 we should
be able to handle it. Most importantly we shouldn't get different
results if we do this compared to if we don't!
An exception is made for CCM mode which has special handling for this in
the low level cipher function.
Fixes#8675
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10530)
EVP_CIPHER_CTX_set_keylen() was succeeding even though a bad key length
is passed to it. This is because the set_ctx_params() were all accepting
this parameter and blindly changing the keylen even though the cipher did
not accept a variable key length. Even removing this didn't entirely
resolve the issue because set_ctx_params() functions succeed even if
passed a parameter they do not recognise.
This should fix various issues found by OSSfuzz/Cryptofuzz.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10449)
Speed test, aes-siv related cases fail on both x86 and arm.
The return value of siv_init() causes this problem, remove
the iv check to fix it.
Verify it locally, the result is pass.
Fixes#10416
Change-Id: If1a18599f3d0f56f22a1ce4f8f114b8db0f68cca
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10419)
Fixes#10438
issue found by clusterfuzz/ossfuzz
The dest was getting a copy of the src structure which contained a pointer that should point to an offset inside itself - because of the copy it was pointing to the original structure.
The setup for a ctx is mainly done by the initkey method in the PROV_CIPHER_HW structure. Because of this it makes sense that the structure should also contain a copyctx method that is use to resolve any pointers that need to be setup.
A dup_ctx has been added to the cipher_enc tests in evp_test. It does a dup after setup and then frees the original ctx. This detects any floating pointers in the duplicated context that were pointing back to the freed ctx.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10443)
Not needed any more, since the presence of the OSSL_FUNC_CIPHER_CIPHER
function is enough to tell that there's a custom cipher function.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10137)
This involves gcm_cipher() (providers/common/ciphers/cipher_gcm.c),
ccm_cipher() (providers/common/ciphers/cipher_ccm.c), and
tdes_wrap_cipher() (providers/common/ciphers/cipher_tdes_wrap.c)
These are generic implementations of the OSSL_FUNC_CIPHER_CIPHER
function, which returned -1 on error when they should return 0.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10137)
The end up in providers/common/include/prov/.
All inclusions are adjusted accordingly.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10088)
New name is providers/implementations/include/prov/implementations.h
All inclusions are adapted accordingly.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10088)
From providers/{common,default}/ to providers/implementations/
Except for common code, which remains in providers/common/ciphers/.
However, we do move providers/common/include/internal/ciphers/*.h
to providers/common/include/prov/, and adjust all source including
any of those header files.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10088)