4
0
mirror of https://github.com/QuasarApp/openssl.git synced 2025-05-08 23:49:39 +00:00

Remove duplicated 448 in the names of various things

Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)
This commit is contained in:
Matt Caswell 2017-12-06 13:06:13 +00:00
parent 001a093419
commit db90b274a1
5 changed files with 127 additions and 128 deletions

@ -267,7 +267,7 @@ void curve448_precomputed_scalarmul(curve448_point_t out,
for (k = 0; k < t; k++) {
unsigned int bit = i + s * (k + j * t);
if (bit < C448_448_SCALAR_BITS) {
if (bit < C448_SCALAR_BITS) {
tab |=
(scalar1x->limb[bit / WBITS] >> (bit % WBITS) & 1) << k;
}
@ -294,7 +294,7 @@ void curve448_precomputed_scalarmul(curve448_point_t out,
}
void curve448_point_mul_by_ratio_and_encode_like_eddsa(
uint8_t enc[C448_EDDSA_448_PUBLIC_BYTES],
uint8_t enc[EDDSA_448_PUBLIC_BYTES],
const curve448_point_t p)
{
@ -329,9 +329,9 @@ void curve448_point_mul_by_ratio_and_encode_like_eddsa(
gf_mul(x, y, z);
/* Encode */
enc[C448_EDDSA_448_PRIVATE_BYTES - 1] = 0;
enc[EDDSA_448_PRIVATE_BYTES - 1] = 0;
gf_serialize(enc, x, 1);
enc[C448_EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t);
enc[EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t);
OPENSSL_cleanse(x, sizeof(x));
OPENSSL_cleanse(y, sizeof(y));
@ -342,20 +342,20 @@ void curve448_point_mul_by_ratio_and_encode_like_eddsa(
c448_error_t curve448_point_decode_like_eddsa_and_mul_by_ratio(
curve448_point_t p,
const uint8_t enc[C448_EDDSA_448_PUBLIC_BYTES])
const uint8_t enc[EDDSA_448_PUBLIC_BYTES])
{
uint8_t enc2[C448_EDDSA_448_PUBLIC_BYTES];
uint8_t enc2[EDDSA_448_PUBLIC_BYTES];
mask_t low;
mask_t succ;
memcpy(enc2, enc, sizeof(enc2));
low = ~word_is_zero(enc2[C448_EDDSA_448_PRIVATE_BYTES - 1] & 0x80);
enc2[C448_EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80;
low = ~word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1] & 0x80);
enc2[EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80;
succ = gf_deserialize(p->y, enc2, 1, 0);
#if 0 == 0
succ &= word_is_zero(enc2[C448_EDDSA_448_PRIVATE_BYTES - 1]);
succ &= word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1]);
#endif
gf_sqr(p->x, p->y);
@ -399,9 +399,9 @@ c448_error_t curve448_point_decode_like_eddsa_and_mul_by_ratio(
return c448_succeed_if(mask_to_bool(succ));
}
c448_error_t c448_x448(uint8_t out[X_PUBLIC_BYTES],
const uint8_t base[X_PUBLIC_BYTES],
const uint8_t scalar[X_PRIVATE_BYTES])
c448_error_t x448_int(uint8_t out[X_PUBLIC_BYTES],
const uint8_t base[X_PUBLIC_BYTES],
const uint8_t scalar[X_PRIVATE_BYTES])
{
gf x1, x2, z2, x3, z3, t1, t2;
int t;
@ -486,8 +486,8 @@ void curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t
curve448_point_destroy(q);
}
void c448_x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],
const uint8_t scalar[X_PRIVATE_BYTES])
void x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],
const uint8_t scalar[X_PRIVATE_BYTES])
{
/* Scalar conditioning */
uint8_t scalar2[X_PRIVATE_BYTES];
@ -504,7 +504,7 @@ void c448_x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],
curve448_scalar_decode_long(the_scalar, scalar2, sizeof(scalar2));
/* Compensate for the encoding ratio */
for (i = 1; i < C448_X448_ENCODE_RATIO; i <<= 1) {
for (i = 1; i < X448_ENCODE_RATIO; i <<= 1) {
curve448_scalar_halve(the_scalar, the_scalar);
}
curve448_precomputed_scalarmul(p, curve448_precomputed_base, the_scalar);
@ -522,7 +522,7 @@ static int recode_wnaf(struct smvt_control *control,
const curve448_scalar_t scalar,
unsigned int table_bits)
{
unsigned int table_size = C448_448_SCALAR_BITS / (table_bits + 1) + 3;
unsigned int table_size = C448_SCALAR_BITS / (table_bits + 1) + 3;
int position = table_size - 1; /* at the end */
uint64_t current = scalar->limb[0] & 0xFFFF;
uint32_t mask = (1 << (table_bits + 1)) - 1;
@ -541,8 +541,8 @@ static int recode_wnaf(struct smvt_control *control,
* 1/5 op. Probably not worth it.
*/
for (w = 1; w < (C448_448_SCALAR_BITS - 1) / 16 + 3; w++) {
if (w < (C448_448_SCALAR_BITS - 1) / 16 + 1) {
for (w = 1; w < (C448_SCALAR_BITS - 1) / 16 + 3; w++) {
if (w < (C448_SCALAR_BITS - 1) / 16 + 1) {
/* Refill the 16 high bits of current */
current += (uint32_t)((scalar->limb[w / B_OVER_16]
>> (16 * (w % B_OVER_16))) << 16);
@ -612,9 +612,9 @@ void curve448_base_double_scalarmul_non_secret(curve448_point_t combo,
{
const int table_bits_var = C448_WNAF_VAR_TABLE_BITS,
table_bits_pre = C448_WNAF_FIXED_TABLE_BITS;
struct smvt_control control_var[C448_448_SCALAR_BITS /
struct smvt_control control_var[C448_SCALAR_BITS /
(C448_WNAF_VAR_TABLE_BITS + 1) + 3];
struct smvt_control control_pre[C448_448_SCALAR_BITS /
struct smvt_control control_pre[C448_SCALAR_BITS /
(C448_WNAF_FIXED_TABLE_BITS + 1) + 3];
int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre);
int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var);
@ -697,12 +697,12 @@ void curve448_point_destroy(curve448_point_t point)
int X448(uint8_t out_shared_key[56], const uint8_t private_key[56],
const uint8_t peer_public_value[56])
{
return c448_x448(out_shared_key, peer_public_value, private_key)
== C448_SUCCESS;
return x448_int(out_shared_key, peer_public_value, private_key)
== C448_SUCCESS;
}
void X448_public_from_private(uint8_t out_public_value[56],
const uint8_t private_key[56])
{
c448_x448_derive_public_key(out_public_value, private_key);
x448_derive_public_key(out_public_value, private_key);
}

@ -20,20 +20,20 @@ extern "C" {
#endif
/* Number of bytes in an EdDSA public key. */
# define C448_EDDSA_448_PUBLIC_BYTES 57
# define EDDSA_448_PUBLIC_BYTES 57
/* Number of bytes in an EdDSA private key. */
# define C448_EDDSA_448_PRIVATE_BYTES C448_EDDSA_448_PUBLIC_BYTES
# define EDDSA_448_PRIVATE_BYTES EDDSA_448_PUBLIC_BYTES
/* Number of bytes in an EdDSA private key. */
# define C448_EDDSA_448_SIGNATURE_BYTES (C448_EDDSA_448_PUBLIC_BYTES + \
C448_EDDSA_448_PRIVATE_BYTES)
# define EDDSA_448_SIGNATURE_BYTES (EDDSA_448_PUBLIC_BYTES + \
EDDSA_448_PRIVATE_BYTES)
/* EdDSA encoding ratio. */
# define C448_448_EDDSA_ENCODE_RATIO 4
# define C448_EDDSA_ENCODE_RATIO 4
/* EdDSA decoding ratio. */
# define C448_448_EDDSA_DECODE_RATIO (4 / 4)
# define C448_EDDSA_DECODE_RATIO (4 / 4)
/*
* EdDSA key generation. This function uses a different (non-Decaf) encoding.
@ -42,8 +42,8 @@ extern "C" {
* privkey (in): The private key.
*/
c448_error_t c448_ed448_derive_public_key(
uint8_t pubkey [C448_EDDSA_448_PUBLIC_BYTES],
const uint8_t privkey [C448_EDDSA_448_PRIVATE_BYTES]);
uint8_t pubkey [EDDSA_448_PUBLIC_BYTES],
const uint8_t privkey [EDDSA_448_PRIVATE_BYTES]);
/*
* EdDSA signing.
@ -64,9 +64,9 @@ c448_error_t c448_ed448_derive_public_key(
* it harder to screw this up, but this C code gives you no seat belt.
*/
c448_error_t c448_ed448_sign(
uint8_t signature[C448_EDDSA_448_SIGNATURE_BYTES],
const uint8_t privkey[C448_EDDSA_448_PRIVATE_BYTES],
const uint8_t pubkey[C448_EDDSA_448_PUBLIC_BYTES],
uint8_t signature[EDDSA_448_SIGNATURE_BYTES],
const uint8_t privkey[EDDSA_448_PRIVATE_BYTES],
const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES],
const uint8_t *message, size_t message_len,
uint8_t prehashed, const uint8_t *context,
size_t context_len)
@ -90,9 +90,9 @@ c448_error_t c448_ed448_sign(
* it harder to screw this up, but this C code gives you no seat belt.
*/
c448_error_t c448_ed448_sign_prehash(
uint8_t signature[C448_EDDSA_448_SIGNATURE_BYTES],
const uint8_t privkey[C448_EDDSA_448_PRIVATE_BYTES],
const uint8_t pubkey[C448_EDDSA_448_PUBLIC_BYTES],
uint8_t signature[EDDSA_448_SIGNATURE_BYTES],
const uint8_t privkey[EDDSA_448_PRIVATE_BYTES],
const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES],
const uint8_t hash[64],
const uint8_t *context,
size_t context_len)
@ -118,9 +118,9 @@ c448_error_t c448_ed448_sign_prehash(
* it harder to screw this up, but this C code gives you no seat belt.
*/
c448_error_t c448_ed448_verify(const uint8_t
signature[C448_EDDSA_448_SIGNATURE_BYTES],
signature[EDDSA_448_SIGNATURE_BYTES],
const uint8_t
pubkey[C448_EDDSA_448_PUBLIC_BYTES],
pubkey[EDDSA_448_PUBLIC_BYTES],
const uint8_t *message, size_t message_len,
uint8_t prehashed, const uint8_t *context,
uint8_t context_len)
@ -145,8 +145,8 @@ c448_error_t c448_ed448_verify(const uint8_t
* it harder to screw this up, but this C code gives you no seat belt.
*/
c448_error_t c448_ed448_verify_prehash(
const uint8_t signature[C448_EDDSA_448_SIGNATURE_BYTES],
const uint8_t pubkey[C448_EDDSA_448_PUBLIC_BYTES],
const uint8_t signature[EDDSA_448_SIGNATURE_BYTES],
const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES],
const uint8_t hash[64],
const uint8_t *context,
uint8_t context_len)
@ -154,7 +154,7 @@ c448_error_t c448_ed448_verify_prehash(
/*
* EdDSA point encoding. Used internally, exposed externally.
* Multiplies by C448_448_EDDSA_ENCODE_RATIO first.
* Multiplies by C448_EDDSA_ENCODE_RATIO first.
*
* The multiplication is required because the EdDSA encoding represents
* the cofactor information, but the Decaf encoding ignores it (which
@ -162,25 +162,25 @@ c448_error_t c448_ed448_verify_prehash(
* EdDSA, the cofactor info must get cleared, because the intermediate
* representation doesn't track it.
*
* The way we handle this is to multiply by C448_448_EDDSA_DECODE_RATIO when
* decoding, and by C448_448_EDDSA_ENCODE_RATIO when encoding. The product of
* The way we handle this is to multiply by C448_EDDSA_DECODE_RATIO when
* decoding, and by C448_EDDSA_ENCODE_RATIO when encoding. The product of
* these ratios is always exactly the cofactor 4, so the cofactor ends up
* cleared one way or another. But exactly how that shakes out depends on the
* base points specified in RFC 8032.
*
* The upshot is that if you pass the Decaf/Ristretto base point to
* this function, you will get C448_448_EDDSA_ENCODE_RATIO times the
* this function, you will get C448_EDDSA_ENCODE_RATIO times the
* EdDSA base point.
*
* enc (out): The encoded point.
* p (in): The point.
*/
void curve448_point_mul_by_ratio_and_encode_like_eddsa(
uint8_t enc [C448_EDDSA_448_PUBLIC_BYTES],
uint8_t enc [EDDSA_448_PUBLIC_BYTES],
const curve448_point_t p);
/*
* EdDSA point decoding. Multiplies by C448_448_EDDSA_DECODE_RATIO, and
* EdDSA point decoding. Multiplies by C448_EDDSA_DECODE_RATIO, and
* ignores cofactor information.
*
* See notes on curve448_point_mul_by_ratio_and_encode_like_eddsa
@ -190,7 +190,7 @@ void curve448_point_mul_by_ratio_and_encode_like_eddsa(
*/
c448_error_t curve448_point_decode_like_eddsa_and_mul_by_ratio(
curve448_point_t p,
const uint8_t enc[C448_EDDSA_448_PUBLIC_BYTES]);
const uint8_t enc[EDDSA_448_PUBLIC_BYTES]);
/*
* EdDSA to ECDH private key conversion
@ -201,8 +201,8 @@ c448_error_t curve448_point_decode_like_eddsa_and_mul_by_ratio(
* ed (in): The EdDSA private key
*/
c448_error_t c448_ed448_convert_private_key_to_x448(
uint8_t x[C448_X448_PRIVATE_BYTES],
const uint8_t ed[C448_EDDSA_448_PRIVATE_BYTES]);
uint8_t x[X448_PRIVATE_BYTES],
const uint8_t ed[EDDSA_448_PRIVATE_BYTES]);
#ifdef __cplusplus
} /* extern "C" */

@ -39,18 +39,18 @@ static c448_error_t oneshot_hash(uint8_t *out, size_t outlen,
return C448_SUCCESS;
}
static void clamp(uint8_t secret_scalar_ser[C448_EDDSA_448_PRIVATE_BYTES])
static void clamp(uint8_t secret_scalar_ser[EDDSA_448_PRIVATE_BYTES])
{
uint8_t hibit = (1 << 0) >> 1;
/* Blarg */
secret_scalar_ser[0] &= -COFACTOR;
if (hibit == 0) {
secret_scalar_ser[C448_EDDSA_448_PRIVATE_BYTES - 1] = 0;
secret_scalar_ser[C448_EDDSA_448_PRIVATE_BYTES - 2] |= 0x80;
secret_scalar_ser[EDDSA_448_PRIVATE_BYTES - 1] = 0;
secret_scalar_ser[EDDSA_448_PRIVATE_BYTES - 2] |= 0x80;
} else {
secret_scalar_ser[C448_EDDSA_448_PRIVATE_BYTES - 1] &= hibit - 1;
secret_scalar_ser[C448_EDDSA_448_PRIVATE_BYTES - 1] |= hibit;
secret_scalar_ser[EDDSA_448_PRIVATE_BYTES - 1] &= hibit - 1;
secret_scalar_ser[EDDSA_448_PRIVATE_BYTES - 1] |= hibit;
}
}
@ -79,27 +79,27 @@ static c448_error_t hash_init_with_dom(EVP_MD_CTX *hashctx, uint8_t prehashed,
/* In this file because it uses the hash */
c448_error_t c448_ed448_convert_private_key_to_x448(
uint8_t x[C448_X448_PRIVATE_BYTES],
const uint8_t ed [C448_EDDSA_448_PRIVATE_BYTES])
uint8_t x[X448_PRIVATE_BYTES],
const uint8_t ed [EDDSA_448_PRIVATE_BYTES])
{
/* pass the private key through oneshot_hash function */
/* and keep the first C448_X448_PRIVATE_BYTES bytes */
return oneshot_hash(x, C448_X448_PRIVATE_BYTES, ed,
C448_EDDSA_448_PRIVATE_BYTES);
/* and keep the first X448_PRIVATE_BYTES bytes */
return oneshot_hash(x, X448_PRIVATE_BYTES, ed,
EDDSA_448_PRIVATE_BYTES);
}
c448_error_t c448_ed448_derive_public_key(
uint8_t pubkey[C448_EDDSA_448_PUBLIC_BYTES],
const uint8_t privkey[C448_EDDSA_448_PRIVATE_BYTES])
uint8_t pubkey[EDDSA_448_PUBLIC_BYTES],
const uint8_t privkey[EDDSA_448_PRIVATE_BYTES])
{
/* only this much used for keygen */
uint8_t secret_scalar_ser[C448_EDDSA_448_PRIVATE_BYTES];
uint8_t secret_scalar_ser[EDDSA_448_PRIVATE_BYTES];
curve448_scalar_t secret_scalar;
unsigned int c;
curve448_point_t p;
if (!oneshot_hash(secret_scalar_ser, sizeof(secret_scalar_ser), privkey,
C448_EDDSA_448_PRIVATE_BYTES))
EDDSA_448_PRIVATE_BYTES))
return C448_FAILURE;
clamp(secret_scalar_ser);
@ -115,7 +115,7 @@ c448_error_t c448_ed448_derive_public_key(
* converted it effectively picks up a factor of 2 from the isogenies. So
* we might start at 2 instead of 1.
*/
for (c = 1; c < C448_448_EDDSA_ENCODE_RATIO; c <<= 1)
for (c = 1; c < C448_EDDSA_ENCODE_RATIO; c <<= 1)
curve448_scalar_halve(secret_scalar, secret_scalar);
curve448_precomputed_scalarmul(p, curve448_precomputed_base, secret_scalar);
@ -131,9 +131,9 @@ c448_error_t c448_ed448_derive_public_key(
}
c448_error_t c448_ed448_sign(
uint8_t signature[C448_EDDSA_448_SIGNATURE_BYTES],
const uint8_t privkey[C448_EDDSA_448_PRIVATE_BYTES],
const uint8_t pubkey[C448_EDDSA_448_PUBLIC_BYTES],
uint8_t signature[EDDSA_448_SIGNATURE_BYTES],
const uint8_t privkey[EDDSA_448_PRIVATE_BYTES],
const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES],
const uint8_t *message, size_t message_len,
uint8_t prehashed, const uint8_t *context,
size_t context_len)
@ -142,7 +142,7 @@ c448_error_t c448_ed448_sign(
EVP_MD_CTX *hashctx = EVP_MD_CTX_new();
c448_error_t ret = C448_FAILURE;
curve448_scalar_t nonce_scalar;
uint8_t nonce_point[C448_EDDSA_448_PUBLIC_BYTES] = { 0 };
uint8_t nonce_point[EDDSA_448_PUBLIC_BYTES] = { 0 };
unsigned int c;
curve448_scalar_t challenge_scalar;
@ -152,12 +152,12 @@ c448_error_t c448_ed448_sign(
{
/* Schedule the secret key */
struct {
uint8_t secret_scalar_ser[C448_EDDSA_448_PRIVATE_BYTES];
uint8_t seed[C448_EDDSA_448_PRIVATE_BYTES];
uint8_t secret_scalar_ser[EDDSA_448_PRIVATE_BYTES];
uint8_t seed[EDDSA_448_PRIVATE_BYTES];
} __attribute__ ((packed)) expanded;
if (!oneshot_hash((uint8_t *)&expanded, sizeof(expanded), privkey,
C448_EDDSA_448_PRIVATE_BYTES))
EDDSA_448_PRIVATE_BYTES))
goto err;
clamp(expanded.secret_scalar_ser);
curve448_scalar_decode_long(secret_scalar, expanded.secret_scalar_ser,
@ -175,7 +175,7 @@ c448_error_t c448_ed448_sign(
/* Decode the nonce */
{
uint8_t nonce[2 * C448_EDDSA_448_PRIVATE_BYTES];
uint8_t nonce[2 * EDDSA_448_PRIVATE_BYTES];
if (!EVP_DigestFinalXOF(hashctx, nonce, sizeof(nonce)))
goto err;
@ -189,7 +189,7 @@ c448_error_t c448_ed448_sign(
curve448_point_t p;
curve448_scalar_halve(nonce_scalar_2, nonce_scalar);
for (c = 2; c < C448_448_EDDSA_ENCODE_RATIO; c <<= 1) {
for (c = 2; c < C448_EDDSA_ENCODE_RATIO; c <<= 1) {
curve448_scalar_halve(nonce_scalar_2, nonce_scalar_2);
}
@ -201,12 +201,12 @@ c448_error_t c448_ed448_sign(
}
{
uint8_t challenge[2 * C448_EDDSA_448_PRIVATE_BYTES];
uint8_t challenge[2 * EDDSA_448_PRIVATE_BYTES];
/* Compute the challenge */
if (!hash_init_with_dom(hashctx, prehashed, 0, context, context_len)
|| !EVP_DigestUpdate(hashctx, nonce_point, sizeof(nonce_point))
|| !EVP_DigestUpdate(hashctx, pubkey, C448_EDDSA_448_PUBLIC_BYTES)
|| !EVP_DigestUpdate(hashctx, pubkey, EDDSA_448_PUBLIC_BYTES)
|| !EVP_DigestUpdate(hashctx, message, message_len)
|| !EVP_DigestFinalXOF(hashctx, challenge, sizeof(challenge)))
goto err;
@ -219,9 +219,9 @@ c448_error_t c448_ed448_sign(
curve448_scalar_mul(challenge_scalar, challenge_scalar, secret_scalar);
curve448_scalar_add(challenge_scalar, challenge_scalar, nonce_scalar);
OPENSSL_cleanse(signature, C448_EDDSA_448_SIGNATURE_BYTES);
OPENSSL_cleanse(signature, EDDSA_448_SIGNATURE_BYTES);
memcpy(signature, nonce_point, sizeof(nonce_point));
curve448_scalar_encode(&signature[C448_EDDSA_448_PUBLIC_BYTES],
curve448_scalar_encode(&signature[EDDSA_448_PUBLIC_BYTES],
challenge_scalar);
curve448_scalar_destroy(secret_scalar);
@ -235,9 +235,9 @@ c448_error_t c448_ed448_sign(
}
c448_error_t c448_ed448_sign_prehash(
uint8_t signature[C448_EDDSA_448_SIGNATURE_BYTES],
const uint8_t privkey[C448_EDDSA_448_PRIVATE_BYTES],
const uint8_t pubkey[C448_EDDSA_448_PUBLIC_BYTES],
uint8_t signature[EDDSA_448_SIGNATURE_BYTES],
const uint8_t privkey[EDDSA_448_PRIVATE_BYTES],
const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES],
const uint8_t hash[64], const uint8_t *context,
size_t context_len)
{
@ -246,8 +246,8 @@ c448_error_t c448_ed448_sign_prehash(
}
c448_error_t c448_ed448_verify(
const uint8_t signature[C448_EDDSA_448_SIGNATURE_BYTES],
const uint8_t pubkey[C448_EDDSA_448_PUBLIC_BYTES],
const uint8_t signature[EDDSA_448_SIGNATURE_BYTES],
const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES],
const uint8_t *message, size_t message_len,
uint8_t prehashed, const uint8_t *context,
uint8_t context_len)
@ -270,13 +270,13 @@ c448_error_t c448_ed448_verify(
{
/* Compute the challenge */
EVP_MD_CTX *hashctx = EVP_MD_CTX_new();
uint8_t challenge[2 * C448_EDDSA_448_PRIVATE_BYTES];
uint8_t challenge[2 * EDDSA_448_PRIVATE_BYTES];
if (hashctx == NULL
|| !hash_init_with_dom(hashctx, prehashed, 0, context, context_len)
|| !EVP_DigestUpdate(hashctx, signature,
C448_EDDSA_448_PUBLIC_BYTES)
|| !EVP_DigestUpdate(hashctx, pubkey, C448_EDDSA_448_PUBLIC_BYTES)
EDDSA_448_PUBLIC_BYTES)
|| !EVP_DigestUpdate(hashctx, pubkey, EDDSA_448_PUBLIC_BYTES)
|| !EVP_DigestUpdate(hashctx, message, message_len)
|| !EVP_DigestFinalXOF(hashctx, challenge, sizeof(challenge))) {
EVP_MD_CTX_free(hashctx);
@ -292,10 +292,10 @@ c448_error_t c448_ed448_verify(
challenge_scalar);
curve448_scalar_decode_long(response_scalar,
&signature[C448_EDDSA_448_PUBLIC_BYTES],
C448_EDDSA_448_PRIVATE_BYTES);
&signature[EDDSA_448_PUBLIC_BYTES],
EDDSA_448_PRIVATE_BYTES);
for (c = 1; c < C448_448_EDDSA_DECODE_RATIO; c <<= 1)
for (c = 1; c < C448_EDDSA_DECODE_RATIO; c <<= 1)
curve448_scalar_add(response_scalar, response_scalar, response_scalar);
/* pk_point = -c(x(P)) + (cx + k)G = kG */
@ -306,8 +306,8 @@ c448_error_t c448_ed448_verify(
}
c448_error_t c448_ed448_verify_prehash(
const uint8_t signature[C448_EDDSA_448_SIGNATURE_BYTES],
const uint8_t pubkey[C448_EDDSA_448_PUBLIC_BYTES],
const uint8_t signature[EDDSA_448_SIGNATURE_BYTES],
const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES],
const uint8_t hash[64], const uint8_t *context,
uint8_t context_len)
{

@ -20,22 +20,22 @@
extern "C" {
#endif
# define C448_448_SCALAR_LIMBS ((446-1)/C448_WORD_BITS+1)
# define C448_SCALAR_LIMBS ((446-1)/C448_WORD_BITS+1)
/* The number of bits in a scalar */
# define C448_448_SCALAR_BITS 446
# define C448_SCALAR_BITS 446
/* Number of bytes in a serialized scalar. */
# define C448_448_SCALAR_BYTES 56
# define C448_SCALAR_BYTES 56
/* X448 encoding ratio. */
# define C448_X448_ENCODE_RATIO 2
# define X448_ENCODE_RATIO 2
/* Number of bytes in an x448 public key */
# define C448_X448_PUBLIC_BYTES 56
# define X448_PUBLIC_BYTES 56
/* Number of bytes in an x448 private key */
# define C448_X448_PRIVATE_BYTES 56
# define X448_PRIVATE_BYTES 56
/* Twisted Edwards extended homogeneous coordinates */
typedef struct curve448_point_s {
@ -50,7 +50,7 @@ typedef struct curve448_precomputed_s curve448_precomputed_s;
/* Scalar is stored packed, because we don't need the speed. */
typedef struct curve448_scalar_s {
c448_word_t limb[C448_448_SCALAR_LIMBS];
c448_word_t limb[C448_SCALAR_LIMBS];
} curve448_scalar_t[1];
/* A scalar equal to 1. */
@ -78,7 +78,7 @@ extern const struct curve448_precomputed_s *curve448_precomputed_base;
*/
__owur c448_error_t curve448_scalar_decode(
curve448_scalar_t out,
const unsigned char ser[C448_448_SCALAR_BYTES]);
const unsigned char ser[C448_SCALAR_BYTES]);
/*
* Read a scalar from wire format or from bytes. Reduces mod scalar prime.
@ -96,7 +96,7 @@ void curve448_scalar_decode_long(curve448_scalar_t out,
* ser (out): Serialized form of a scalar.
* s (in): Deserialized scalar.
*/
void curve448_scalar_encode(unsigned char ser[C448_448_SCALAR_BYTES],
void curve448_scalar_encode(unsigned char ser[C448_SCALAR_BYTES],
const curve448_scalar_t s);
/*
@ -198,12 +198,12 @@ void curve448_point_double(curve448_point_t two_a, const curve448_point_t a);
* C448_FAILURE: The scalarmul didn't succeed, because the base point is in a
* small subgroup.
*/
__owur c448_error_t c448_x448(uint8_t out[C448_X448_PUBLIC_BYTES],
const uint8_t base[C448_X448_PUBLIC_BYTES],
const uint8_t scalar[C448_X448_PRIVATE_BYTES]);
__owur c448_error_t x448_int(uint8_t out[X448_PUBLIC_BYTES],
const uint8_t base[X448_PUBLIC_BYTES],
const uint8_t scalar[X448_PRIVATE_BYTES]);
/*
* Multiply a point by C448_X448_ENCODE_RATIO, then encode it like RFC 7748.
* Multiply a point by X448_ENCODE_RATIO, then encode it like RFC 7748.
*
* This function is mainly used internally, but is exported in case
* it will be useful.
@ -215,14 +215,14 @@ __owur c448_error_t c448_x448(uint8_t out[C448_X448_PUBLIC_BYTES],
*
* As it happens, this aligns with the base point definitions; that is,
* if you pass the Decaf/Ristretto base point to this function, the result
* will be C448_X448_ENCODE_RATIO times the X448
* will be X448_ENCODE_RATIO times the X448
* base point.
*
* out (out): The scaled and encoded point.
* p (in): The point to be scaled and encoded.
*/
void curve448_point_mul_by_ratio_and_encode_like_x448(
uint8_t out[C448_X448_PUBLIC_BYTES],
uint8_t out[X448_PUBLIC_BYTES],
const curve448_point_t p);
/*
@ -232,9 +232,8 @@ void curve448_point_mul_by_ratio_and_encode_like_x448(
* out (out): The scaled point base*scalar
* scalar (in): The scalar to multiply by.
*/
void c448_x448_derive_public_key(
uint8_t out[C448_X448_PUBLIC_BYTES],
const uint8_t scalar[C448_X448_PRIVATE_BYTES]);
void x448_derive_public_key(uint8_t out[X448_PUBLIC_BYTES],
const uint8_t scalar[X448_PRIVATE_BYTES]);
/*
* Multiply a precomputed base point by a scalar: out = scalar*base.

@ -47,7 +47,7 @@ const curve448_scalar_t curve448_scalar_zero = {{{0}}};
* Must have extra <= 1
*/
static void sc_subx(curve448_scalar_t out,
const c448_word_t accum[C448_448_SCALAR_LIMBS],
const c448_word_t accum[C448_SCALAR_LIMBS],
const curve448_scalar_t sub,
const curve448_scalar_t p, c448_word_t extra)
{
@ -55,7 +55,7 @@ static void sc_subx(curve448_scalar_t out,
unsigned int i;
c448_word_t borrow;
for (i = 0; i < C448_448_SCALAR_LIMBS; i++) {
for (i = 0; i < C448_SCALAR_LIMBS; i++) {
chain = (chain + accum[i]) - sub->limb[i];
out->limb[i] = chain;
chain >>= WBITS;
@ -63,7 +63,7 @@ static void sc_subx(curve448_scalar_t out,
borrow = chain + extra; /* = 0 or -1 */
chain = 0;
for (i = 0; i < C448_448_SCALAR_LIMBS; i++) {
for (i = 0; i < C448_SCALAR_LIMBS; i++) {
chain = (chain + out->limb[i]) + (p->limb[i] & borrow);
out->limb[i] = chain;
chain >>= WBITS;
@ -74,15 +74,15 @@ static void sc_montmul(curve448_scalar_t out, const curve448_scalar_t a,
const curve448_scalar_t b)
{
unsigned int i, j;
c448_word_t accum[C448_448_SCALAR_LIMBS + 1] = { 0 };
c448_word_t accum[C448_SCALAR_LIMBS + 1] = { 0 };
c448_word_t hi_carry = 0;
for (i = 0; i < C448_448_SCALAR_LIMBS; i++) {
for (i = 0; i < C448_SCALAR_LIMBS; i++) {
c448_word_t mand = a->limb[i];
const c448_word_t *mier = b->limb;
c448_dword_t chain = 0;
for (j = 0; j < C448_448_SCALAR_LIMBS; j++) {
for (j = 0; j < C448_SCALAR_LIMBS; j++) {
chain += ((c448_dword_t) mand) * mier[j] + accum[j];
accum[j] = chain;
chain >>= WBITS;
@ -92,7 +92,7 @@ static void sc_montmul(curve448_scalar_t out, const curve448_scalar_t a,
mand = accum[0] * MONTGOMERY_FACTOR;
chain = 0;
mier = sc_p->limb;
for (j = 0; j < C448_448_SCALAR_LIMBS; j++) {
for (j = 0; j < C448_SCALAR_LIMBS; j++) {
chain += (c448_dword_t) mand *mier[j] + accum[j];
if (j)
accum[j - 1] = chain;
@ -126,7 +126,7 @@ void curve448_scalar_add(curve448_scalar_t out, const curve448_scalar_t a,
c448_dword_t chain = 0;
unsigned int i;
for (i = 0; i < C448_448_SCALAR_LIMBS; i++) {
for (i = 0; i < C448_SCALAR_LIMBS; i++) {
chain = (chain + a->limb[i]) + b->limb[i];
out->limb[i] = chain;
chain >>= WBITS;
@ -140,7 +140,7 @@ static ossl_inline void scalar_decode_short(curve448_scalar_t s,
{
unsigned int i, j, k = 0;
for (i = 0; i < C448_448_SCALAR_LIMBS; i++) {
for (i = 0; i < C448_SCALAR_LIMBS; i++) {
c448_word_t out = 0;
for (j = 0; j < sizeof(c448_word_t) && k < nbytes; j++, k++)
@ -151,13 +151,13 @@ static ossl_inline void scalar_decode_short(curve448_scalar_t s,
c448_error_t curve448_scalar_decode(
curve448_scalar_t s,
const unsigned char ser[C448_448_SCALAR_BYTES])
const unsigned char ser[C448_SCALAR_BYTES])
{
unsigned int i;
c448_dsword_t accum = 0;
scalar_decode_short(s, ser, C448_448_SCALAR_BYTES);
for (i = 0; i < C448_448_SCALAR_LIMBS; i++)
scalar_decode_short(s, ser, C448_SCALAR_BYTES);
for (i = 0; i < C448_SCALAR_LIMBS; i++)
accum = (accum + s->limb[i] - sc_p->limb[i]) >> WBITS;
/* Here accum == 0 or -1 */
@ -182,9 +182,9 @@ void curve448_scalar_decode_long(curve448_scalar_t s,
return;
}
i = ser_len - (ser_len % C448_448_SCALAR_BYTES);
i = ser_len - (ser_len % C448_SCALAR_BYTES);
if (i == ser_len)
i -= C448_448_SCALAR_BYTES;
i -= C448_SCALAR_BYTES;
scalar_decode_short(t1, &ser[i], ser_len - i);
@ -197,7 +197,7 @@ void curve448_scalar_decode_long(curve448_scalar_t s,
}
while (i) {
i -= C448_448_SCALAR_BYTES;
i -= C448_SCALAR_BYTES;
sc_montmul(t1, t1, sc_r2);
ignore_result(curve448_scalar_decode(t2, ser + i));
curve448_scalar_add(t1, t1, t2);
@ -208,12 +208,12 @@ void curve448_scalar_decode_long(curve448_scalar_t s,
curve448_scalar_destroy(t2);
}
void curve448_scalar_encode(unsigned char ser[C448_448_SCALAR_BYTES],
void curve448_scalar_encode(unsigned char ser[C448_SCALAR_BYTES],
const curve448_scalar_t s)
{
unsigned int i, j, k = 0;
for (i = 0; i < C448_448_SCALAR_LIMBS; i++) {
for (i = 0; i < C448_SCALAR_LIMBS; i++) {
for (j = 0; j < sizeof(c448_word_t); j++, k++)
ser[k] = s->limb[i] >> (8 * j);
}
@ -224,12 +224,12 @@ void curve448_scalar_halve(curve448_scalar_t out, const curve448_scalar_t a)
c448_word_t mask = -(a->limb[0] & 1);
c448_dword_t chain = 0;
unsigned int i;
for (i = 0; i < C448_448_SCALAR_LIMBS; i++) {
for (i = 0; i < C448_SCALAR_LIMBS; i++) {
chain = (chain + a->limb[i]) + (sc_p->limb[i] & mask);
out->limb[i] = chain;
chain >>= C448_WORD_BITS;
}
for (i = 0; i < C448_448_SCALAR_LIMBS - 1; i++)
for (i = 0; i < C448_SCALAR_LIMBS - 1; i++)
out->limb[i] = out->limb[i] >> 1 | out->limb[i + 1] << (WBITS - 1);
out->limb[i] = out->limb[i] >> 1 | chain << (WBITS - 1);
}