mirror of
https://github.com/QuasarApp/openssl.git
synced 2025-05-21 13:59:40 +00:00
ECC: unify generic ec2 and ecp scalar multiplication, deprecate ec2_mult.c
Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Andy Polyakov <appro@openssl.org> Reviewed-by: Rich Salz <rsalz@openssl.org> (Merged from https://github.com/openssl/openssl/pull/6070)
This commit is contained in:
parent
fe2d397588
commit
a7b0b69c6e
4
CHANGES
4
CHANGES
@ -9,6 +9,10 @@
|
||||
|
||||
Changes between 1.1.0h and 1.1.1 [xx XXX xxxx]
|
||||
|
||||
*) Deprecate ec2_mult.c and unify scalar multiplication code paths for
|
||||
binary and prime elliptic curves.
|
||||
[Billy Bob Brumley]
|
||||
|
||||
*) Remove ECDSA nonce padding: EC_POINT_mul is now responsible for
|
||||
constant time fixed point multiplication.
|
||||
[Billy Bob Brumley]
|
||||
|
@ -2,7 +2,7 @@ LIBS=../../libcrypto
|
||||
SOURCE[../../libcrypto]=\
|
||||
ec_lib.c ecp_smpl.c ecp_mont.c ecp_nist.c ec_cvt.c ec_mult.c \
|
||||
ec_err.c ec_curve.c ec_check.c ec_print.c ec_asn1.c ec_key.c \
|
||||
ec2_smpl.c ec2_mult.c ec_ameth.c ec_pmeth.c eck_prn.c \
|
||||
ec2_smpl.c ec_ameth.c ec_pmeth.c eck_prn.c \
|
||||
ecp_nistp224.c ecp_nistp256.c ecp_nistp521.c ecp_nistputil.c \
|
||||
ecp_oct.c ec2_oct.c ec_oct.c ec_kmeth.c ecdh_ossl.c ecdh_kdf.c \
|
||||
ecdsa_ossl.c ecdsa_sign.c ecdsa_vrf.c curve25519.c ecx_meth.c \
|
||||
|
@ -1,404 +0,0 @@
|
||||
/*
|
||||
* Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved.
|
||||
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include <openssl/err.h>
|
||||
|
||||
#include "internal/bn_int.h"
|
||||
#include "ec_lcl.h"
|
||||
|
||||
#ifndef OPENSSL_NO_EC2M
|
||||
|
||||
/*-
|
||||
* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
|
||||
* coordinates.
|
||||
* Uses algorithm Mdouble in appendix of
|
||||
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
||||
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
|
||||
* modified to not require precomputation of c=b^{2^{m-1}}.
|
||||
*/
|
||||
static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z,
|
||||
BN_CTX *ctx)
|
||||
{
|
||||
BIGNUM *t1;
|
||||
int ret = 0;
|
||||
|
||||
/* Since Mdouble is static we can guarantee that ctx != NULL. */
|
||||
BN_CTX_start(ctx);
|
||||
t1 = BN_CTX_get(ctx);
|
||||
if (t1 == NULL)
|
||||
goto err;
|
||||
|
||||
if (!group->meth->field_sqr(group, x, x, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_sqr(group, t1, z, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_mul(group, z, x, t1, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_sqr(group, x, x, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_sqr(group, t1, t1, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_mul(group, t1, group->b, t1, ctx))
|
||||
goto err;
|
||||
if (!BN_GF2m_add(x, x, t1))
|
||||
goto err;
|
||||
|
||||
ret = 1;
|
||||
|
||||
err:
|
||||
BN_CTX_end(ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*-
|
||||
* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
|
||||
* projective coordinates.
|
||||
* Uses algorithm Madd in appendix of
|
||||
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
||||
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
|
||||
*/
|
||||
static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1,
|
||||
BIGNUM *z1, const BIGNUM *x2, const BIGNUM *z2,
|
||||
BN_CTX *ctx)
|
||||
{
|
||||
BIGNUM *t1, *t2;
|
||||
int ret = 0;
|
||||
|
||||
/* Since Madd is static we can guarantee that ctx != NULL. */
|
||||
BN_CTX_start(ctx);
|
||||
t1 = BN_CTX_get(ctx);
|
||||
t2 = BN_CTX_get(ctx);
|
||||
if (t2 == NULL)
|
||||
goto err;
|
||||
|
||||
if (!BN_copy(t1, x))
|
||||
goto err;
|
||||
if (!group->meth->field_mul(group, x1, x1, z2, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_mul(group, z1, z1, x2, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_mul(group, t2, x1, z1, ctx))
|
||||
goto err;
|
||||
if (!BN_GF2m_add(z1, z1, x1))
|
||||
goto err;
|
||||
if (!group->meth->field_sqr(group, z1, z1, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_mul(group, x1, z1, t1, ctx))
|
||||
goto err;
|
||||
if (!BN_GF2m_add(x1, x1, t2))
|
||||
goto err;
|
||||
|
||||
ret = 1;
|
||||
|
||||
err:
|
||||
BN_CTX_end(ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*-
|
||||
* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
|
||||
* using Montgomery point multiplication algorithm Mxy() in appendix of
|
||||
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
||||
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
|
||||
* Returns:
|
||||
* 0 on error
|
||||
* 1 if return value should be the point at infinity
|
||||
* 2 otherwise
|
||||
*/
|
||||
static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y,
|
||||
BIGNUM *x1, BIGNUM *z1, BIGNUM *x2, BIGNUM *z2,
|
||||
BN_CTX *ctx)
|
||||
{
|
||||
BIGNUM *t3, *t4, *t5;
|
||||
int ret = 0;
|
||||
|
||||
if (BN_is_zero(z1)) {
|
||||
BN_zero(x2);
|
||||
BN_zero(z2);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (BN_is_zero(z2)) {
|
||||
if (!BN_copy(x2, x))
|
||||
return 0;
|
||||
if (!BN_GF2m_add(z2, x, y))
|
||||
return 0;
|
||||
return 2;
|
||||
}
|
||||
|
||||
/* Since Mxy is static we can guarantee that ctx != NULL. */
|
||||
BN_CTX_start(ctx);
|
||||
t3 = BN_CTX_get(ctx);
|
||||
t4 = BN_CTX_get(ctx);
|
||||
t5 = BN_CTX_get(ctx);
|
||||
if (t5 == NULL)
|
||||
goto err;
|
||||
|
||||
if (!BN_one(t5))
|
||||
goto err;
|
||||
|
||||
if (!group->meth->field_mul(group, t3, z1, z2, ctx))
|
||||
goto err;
|
||||
|
||||
if (!group->meth->field_mul(group, z1, z1, x, ctx))
|
||||
goto err;
|
||||
if (!BN_GF2m_add(z1, z1, x1))
|
||||
goto err;
|
||||
if (!group->meth->field_mul(group, z2, z2, x, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_mul(group, x1, z2, x1, ctx))
|
||||
goto err;
|
||||
if (!BN_GF2m_add(z2, z2, x2))
|
||||
goto err;
|
||||
|
||||
if (!group->meth->field_mul(group, z2, z2, z1, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_sqr(group, t4, x, ctx))
|
||||
goto err;
|
||||
if (!BN_GF2m_add(t4, t4, y))
|
||||
goto err;
|
||||
if (!group->meth->field_mul(group, t4, t4, t3, ctx))
|
||||
goto err;
|
||||
if (!BN_GF2m_add(t4, t4, z2))
|
||||
goto err;
|
||||
|
||||
if (!group->meth->field_mul(group, t3, t3, x, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_div(group, t3, t5, t3, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_mul(group, t4, t3, t4, ctx))
|
||||
goto err;
|
||||
if (!group->meth->field_mul(group, x2, x1, t3, ctx))
|
||||
goto err;
|
||||
if (!BN_GF2m_add(z2, x2, x))
|
||||
goto err;
|
||||
|
||||
if (!group->meth->field_mul(group, z2, z2, t4, ctx))
|
||||
goto err;
|
||||
if (!BN_GF2m_add(z2, z2, y))
|
||||
goto err;
|
||||
|
||||
ret = 2;
|
||||
|
||||
err:
|
||||
BN_CTX_end(ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*-
|
||||
* Computes scalar*point and stores the result in r.
|
||||
* point can not equal r.
|
||||
* Uses a modified algorithm 2P of
|
||||
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
||||
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
|
||||
*
|
||||
* To protect against side-channel attack the function uses constant time swap,
|
||||
* avoiding conditional branches.
|
||||
*/
|
||||
static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group,
|
||||
EC_POINT *r,
|
||||
const BIGNUM *scalar,
|
||||
const EC_POINT *point,
|
||||
BN_CTX *ctx)
|
||||
{
|
||||
BIGNUM *x1, *x2, *z1, *z2;
|
||||
int ret = 0, i, group_top;
|
||||
BN_ULONG mask, word;
|
||||
|
||||
if (r == point) {
|
||||
ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* if result should be point at infinity */
|
||||
if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
|
||||
EC_POINT_is_at_infinity(group, point)) {
|
||||
return EC_POINT_set_to_infinity(group, r);
|
||||
}
|
||||
|
||||
/* only support affine coordinates */
|
||||
if (!point->Z_is_one)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* Since point_multiply is static we can guarantee that ctx != NULL.
|
||||
*/
|
||||
BN_CTX_start(ctx);
|
||||
x1 = BN_CTX_get(ctx);
|
||||
z1 = BN_CTX_get(ctx);
|
||||
if (z1 == NULL)
|
||||
goto err;
|
||||
|
||||
x2 = r->X;
|
||||
z2 = r->Y;
|
||||
|
||||
group_top = bn_get_top(group->field);
|
||||
if (bn_wexpand(x1, group_top) == NULL
|
||||
|| bn_wexpand(z1, group_top) == NULL
|
||||
|| bn_wexpand(x2, group_top) == NULL
|
||||
|| bn_wexpand(z2, group_top) == NULL)
|
||||
goto err;
|
||||
|
||||
if (!BN_GF2m_mod_arr(x1, point->X, group->poly))
|
||||
goto err; /* x1 = x */
|
||||
if (!BN_one(z1))
|
||||
goto err; /* z1 = 1 */
|
||||
if (!group->meth->field_sqr(group, z2, x1, ctx))
|
||||
goto err; /* z2 = x1^2 = x^2 */
|
||||
if (!group->meth->field_sqr(group, x2, z2, ctx))
|
||||
goto err;
|
||||
if (!BN_GF2m_add(x2, x2, group->b))
|
||||
goto err; /* x2 = x^4 + b */
|
||||
|
||||
/* find top most bit and go one past it */
|
||||
i = bn_get_top(scalar) - 1;
|
||||
mask = BN_TBIT;
|
||||
word = bn_get_words(scalar)[i];
|
||||
while (!(word & mask))
|
||||
mask >>= 1;
|
||||
mask >>= 1;
|
||||
/* if top most bit was at word break, go to next word */
|
||||
if (!mask) {
|
||||
i--;
|
||||
mask = BN_TBIT;
|
||||
}
|
||||
|
||||
for (; i >= 0; i--) {
|
||||
word = bn_get_words(scalar)[i];
|
||||
while (mask) {
|
||||
BN_consttime_swap(word & mask, x1, x2, group_top);
|
||||
BN_consttime_swap(word & mask, z1, z2, group_top);
|
||||
if (!gf2m_Madd(group, point->X, x2, z2, x1, z1, ctx))
|
||||
goto err;
|
||||
if (!gf2m_Mdouble(group, x1, z1, ctx))
|
||||
goto err;
|
||||
BN_consttime_swap(word & mask, x1, x2, group_top);
|
||||
BN_consttime_swap(word & mask, z1, z2, group_top);
|
||||
mask >>= 1;
|
||||
}
|
||||
mask = BN_TBIT;
|
||||
}
|
||||
|
||||
/* convert out of "projective" coordinates */
|
||||
i = gf2m_Mxy(group, point->X, point->Y, x1, z1, x2, z2, ctx);
|
||||
if (i == 0)
|
||||
goto err;
|
||||
else if (i == 1) {
|
||||
if (!EC_POINT_set_to_infinity(group, r))
|
||||
goto err;
|
||||
} else {
|
||||
if (!BN_one(r->Z))
|
||||
goto err;
|
||||
r->Z_is_one = 1;
|
||||
}
|
||||
|
||||
/* GF(2^m) field elements should always have BIGNUM::neg = 0 */
|
||||
BN_set_negative(r->X, 0);
|
||||
BN_set_negative(r->Y, 0);
|
||||
|
||||
ret = 1;
|
||||
|
||||
err:
|
||||
BN_CTX_end(ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*-
|
||||
* Computes the sum
|
||||
* scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
|
||||
* gracefully ignoring NULL scalar values.
|
||||
*/
|
||||
int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r,
|
||||
const BIGNUM *scalar, size_t num,
|
||||
const EC_POINT *points[], const BIGNUM *scalars[],
|
||||
BN_CTX *ctx)
|
||||
{
|
||||
BN_CTX *new_ctx = NULL;
|
||||
int ret = 0;
|
||||
size_t i;
|
||||
EC_POINT *p = NULL;
|
||||
EC_POINT *acc = NULL;
|
||||
|
||||
if (ctx == NULL) {
|
||||
ctx = new_ctx = BN_CTX_new();
|
||||
if (ctx == NULL)
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* This implementation is more efficient than the wNAF implementation for
|
||||
* 2 or fewer points. Use the ec_wNAF_mul implementation for 3 or more
|
||||
* points, or if we can perform a fast multiplication based on
|
||||
* precomputation.
|
||||
*/
|
||||
if ((scalar && (num > 1)) || (num > 2)
|
||||
|| (num == 0 && EC_GROUP_have_precompute_mult(group))) {
|
||||
ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
|
||||
goto err;
|
||||
}
|
||||
|
||||
if ((p = EC_POINT_new(group)) == NULL)
|
||||
goto err;
|
||||
if ((acc = EC_POINT_new(group)) == NULL)
|
||||
goto err;
|
||||
|
||||
if (!EC_POINT_set_to_infinity(group, acc))
|
||||
goto err;
|
||||
|
||||
if (scalar) {
|
||||
if (!ec_GF2m_montgomery_point_multiply
|
||||
(group, p, scalar, group->generator, ctx))
|
||||
goto err;
|
||||
if (BN_is_negative(scalar))
|
||||
if (!group->meth->invert(group, p, ctx))
|
||||
goto err;
|
||||
if (!group->meth->add(group, acc, acc, p, ctx))
|
||||
goto err;
|
||||
}
|
||||
|
||||
for (i = 0; i < num; i++) {
|
||||
if (!ec_GF2m_montgomery_point_multiply
|
||||
(group, p, scalars[i], points[i], ctx))
|
||||
goto err;
|
||||
if (BN_is_negative(scalars[i]))
|
||||
if (!group->meth->invert(group, p, ctx))
|
||||
goto err;
|
||||
if (!group->meth->add(group, acc, acc, p, ctx))
|
||||
goto err;
|
||||
}
|
||||
|
||||
if (!EC_POINT_copy(r, acc))
|
||||
goto err;
|
||||
|
||||
ret = 1;
|
||||
|
||||
err:
|
||||
EC_POINT_free(p);
|
||||
EC_POINT_free(acc);
|
||||
BN_CTX_free(new_ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Precomputation for point multiplication: fall back to wNAF methods because
|
||||
* ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate
|
||||
*/
|
||||
|
||||
int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
|
||||
{
|
||||
return ec_wNAF_precompute_mult(group, ctx);
|
||||
}
|
||||
|
||||
int ec_GF2m_have_precompute_mult(const EC_GROUP *group)
|
||||
{
|
||||
return ec_wNAF_have_precompute_mult(group);
|
||||
}
|
||||
|
||||
#endif
|
@ -47,14 +47,9 @@ const EC_METHOD *EC_GF2m_simple_method(void)
|
||||
ec_GF2m_simple_cmp,
|
||||
ec_GF2m_simple_make_affine,
|
||||
ec_GF2m_simple_points_make_affine,
|
||||
|
||||
/*
|
||||
* the following three method functions are defined in ec2_mult.c
|
||||
*/
|
||||
ec_GF2m_simple_mul,
|
||||
ec_GF2m_precompute_mult,
|
||||
ec_GF2m_have_precompute_mult,
|
||||
|
||||
0 /* mul */,
|
||||
0 /* precompute_mul */,
|
||||
0 /* have_precompute_mul */,
|
||||
ec_GF2m_simple_field_mul,
|
||||
ec_GF2m_simple_field_sqr,
|
||||
ec_GF2m_simple_field_div,
|
||||
|
@ -443,14 +443,6 @@ int ec_GF2m_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
||||
int ec_GF2m_simple_field_div(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
||||
const BIGNUM *b, BN_CTX *);
|
||||
|
||||
/* method functions in ec2_mult.c */
|
||||
int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r,
|
||||
const BIGNUM *scalar, size_t num,
|
||||
const EC_POINT *points[], const BIGNUM *scalars[],
|
||||
BN_CTX *);
|
||||
int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx);
|
||||
int ec_GF2m_have_precompute_mult(const EC_GROUP *group);
|
||||
|
||||
#ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
|
||||
/* method functions in ecp_nistp224.c */
|
||||
int ec_GFp_nistp224_group_init(EC_GROUP *group);
|
||||
|
Loading…
x
Reference in New Issue
Block a user