Qt-AES/qaesencryption.cpp
2017-06-21 16:49:00 -07:00

362 lines
9.7 KiB
C++

#include "qaesencryption.h"
#include <QDebug>
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * xTime(x)) ^ \
((y>>2 & 1) * xTime(xTime(x))) ^ \
((y>>3 & 1) * xTime(xTime(xTime(x)))) ^ \
((y>>4 & 1) * xTime(xTime(xTime(xTime(x)))))) \
QAESEncryption::QAESEncryption(QAESEncryption::AES level, QAESEncryption::MODE mode) : m_level(level), m_mode(mode)
{
m_state = NULL;
switch (level)
{
case AES_128: {
AES128 aes;
m_nk = aes.nk;
m_keyLen = aes.keylen;
m_nr = aes.nr;
m_expandedKey = aes.expandedKey;
qDebug() << "AES128";
}
break;
case AES_192: {
AES192 aes;
m_nk = aes.nk;
m_keyLen = aes.keylen;
m_nr = aes.nr;
m_expandedKey = aes.expandedKey;
}
break;
case AES_256: {
AES256 aes;
m_nk = aes.nk;
m_keyLen = aes.keylen;
m_nr = aes.nr;
m_expandedKey = aes.expandedKey;
}
break;
default: {
AES128 aes;
m_nk = aes.nk;
m_keyLen = aes.keylen;
m_nr = aes.nr;
m_expandedKey = aes.expandedKey;
}
break;
}
}
uint8_t QAESEncryption::getSBoxValue(uint8_t num)
{
return sbox[num];
}
uint8_t QAESEncryption::getSBoxInvert(uint8_t num)
{
return rsbox[num];
}
QByteArray QAESEncryption::expandKey(const QByteArray key)
{
int i, k;
uint8_t tempa[4]; // Used for the column/row operations
QByteArray roundKey(key);
// The first round key is the key itself.
for(i = 0; i < m_nk; ++i)
{
roundKey.insert((i * 4) + 0, key.at((i * 4) + 0));
roundKey.insert((i * 4) + 1, key.at((i * 4) + 1));
roundKey.insert((i * 4) + 2, key.at((i * 4) + 2));
roundKey.insert((i * 4) + 3, key.at((i * 4) + 3));
}
// All other round keys are found from the previous round keys.
//i == Nk
for(; i < m_nb * (m_nr + 1); ++i)
{
{
tempa[0] = roundKey.at((i-1) * 4 + 0);
tempa[1] = roundKey.at((i-1) * 4 + 1);
tempa[2] = roundKey.at((i-1) * 4 + 2);
tempa[3] = roundKey.at((i-1) * 4 + 3);
}
if (i % m_nk == 0)
{
// This function shifts the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
k = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = k;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
tempa[0] = tempa[0] ^ Rcon[i/m_nk];
}
if (m_level == AES_256 && i % m_nk == 4)
{
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
}
roundKey.insert(i * 4 + 0, roundKey.at((i - m_nk) * 4 + 0) ^ tempa[0]);
roundKey.insert(i * 4 + 1, roundKey.at((i - m_nk) * 4 + 1) ^ tempa[1]);
roundKey.insert(i * 4 + 2, roundKey.at((i - m_nk) * 4 + 2) ^ tempa[2]);
roundKey.insert(i * 4 + 3, roundKey.at((i - m_nk) * 4 + 3) ^ tempa[3]);
}
return roundKey;
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
void QAESEncryption::addRoundKey(int round, const QByteArray expKey)
{
for(int i=0; i < 16; i++)
m_state->insert(i, m_state->at(i) ^ expKey.at(round * m_nb * 4 + (i/4) * m_nb + (i%4)));
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
void QAESEncryption::subBytes()
{
for(int i = 0; i < 16; i++)
m_state->insert(i, getSBoxValue(m_state->at(i)));
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
void QAESEncryption::shiftRows()
{
uint8_t temp;
//Shift 1
temp = m_state->at(4);
m_state->insert(4, m_state->at(4+1));
m_state->insert(4+1, m_state->at(4+2));
m_state->insert(4+2, m_state->at(4+3));
m_state->insert(4+3, temp);
//Shift 2
temp = m_state->at(8);
m_state->insert(8, m_state->at(8+2));
m_state->insert(8+2, temp);
temp = m_state->at(8+1);
m_state->insert(8+1, m_state->at(8+3));
m_state->insert(8+3, temp);
//Shift 3
temp = m_state->at(12);
m_state->insert(12, m_state->at(12+3));
m_state->insert(12+3, m_state->at(12+2));
m_state->insert(12+2, m_state->at(12+1));
m_state->insert(12+1, temp);
}
// MixColumns function mixes the columns of the state matrix
//optimized!!
void QAESEncryption::mixColumns()
{
uint8_t Tmp,Tm,t;
for(int i = 0; i < 16; i+=4)
{
t = m_state->at(i);
Tmp = m_state->at(i) ^ m_state->at(i+1) ^ m_state->at(i+2) ^ m_state->at(i+3) ;
Tm = m_state->at(i) ^ m_state->at(i+1);
Tm = xTime(Tm);
m_state->insert(i, m_state->at(i) ^ Tm ^ Tmp);
Tm = m_state->at(i+1) ^ m_state->at(i+2);
Tm = xTime(Tm);
m_state->insert(i+1, m_state->at(i+1) ^ Tm ^ Tmp);
Tm = m_state->at(i+2) ^ m_state->at(i+3);
Tm = xTime(Tm);
m_state->insert(i+2, m_state->at(i+2) ^ Tm ^ Tmp);
Tm = m_state->at(i+3) ^ t;
Tm = xTime(Tm);
m_state->insert(i+3, m_state->at(i+3) ^ Tm ^ Tmp);
}
}
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
void QAESEncryption::invMixColumns()
{
uint8_t a,b,c,d;
for(int i = 0; i < 16; i+=4)
{
a = m_state->at(i);
b = m_state->at(i+1);
c = m_state->at(i+2);
d = m_state->at(i+3);
m_state->insert(i, Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09));
m_state->insert(i+1, Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d));
m_state->insert(i+2, Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b));
m_state->insert(i+3, Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e));
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
void QAESEncryption::invSubBytes()
{
for(int i = 0; i < 16; ++i)
m_state->insert(i, getSBoxInvert(m_state->at(i)));
}
void QAESEncryption::invShiftRows()
{
uint8_t temp;
//Shift 1 to right
temp = m_state->at(4+3);
m_state->insert(4+3, m_state->at(4+2));
m_state->insert(4+2, m_state->at(4+1));
m_state->insert(4+1, m_state->at(4));
m_state->insert(4, temp);
//Shift 2
temp = m_state->at(8+2);
m_state->insert(8+2, m_state->at(8));
m_state->insert(8, temp);
temp = m_state->at(8+3);
m_state->insert(8+3, m_state->at(8+1));
m_state->insert(8+1, temp);
//Shift 3
temp = m_state->at(12+3);
m_state->insert(12+3, m_state->at(12));
m_state->insert(12, m_state->at(12+1));
m_state->insert(12+1, m_state->at(12+2));
m_state->insert(12+2, temp);
}
// Cipher is the main function that encrypts the PlainText.
QByteArray QAESEncryption::cipher(const QByteArray expKey, const QByteArray in)
{
//m_state is the input buffer.... handle it!
QByteArray output(in);
m_state = &output;
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
addRoundKey(0, expKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(round = 1; round < m_nr; ++round)
{
subBytes();
shiftRows();
mixColumns();
addRoundKey(round, expKey);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
subBytes();
shiftRows();
addRoundKey(m_nr, expKey);
//qDebug() << "Cyper " << print(output);
return output;
}
QByteArray QAESEncryption::invCipher(const QByteArray expKey, const QByteArray in)
{
//m_state is the input buffer.... handle it!
QByteArray output(in);
m_state = &output;
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
addRoundKey(m_nr, expKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(round=m_nr-1;round>0;round--)
{
invShiftRows();
invSubBytes();
addRoundKey(round, expKey);
invMixColumns();
}
// The last round is given below.
// The MixColumns function is not here in the last round.
invShiftRows();
invSubBytes();
addRoundKey(0, expKey);
}
QByteArray QAESEncryption::encode(const QByteArray rawText, const QByteArray key, const QByteArray iv)
{
if (m_mode == CBC && iv == NULL)
return NULL; //EMIT ERROR!
//qDebug() << "key" << print(key);
QByteArray expandedKey = expandKey(key);
qDebug() << rawText.size();
// The next function call encrypts the PlainText with the Key using AES algorithm.
return cipher(expandedKey, rawText);
}
QString QAESEncryption::print(QByteArray in)
{
QString ret="";
QByteArray out = in.toHex();
for (int i=0; i < out.size();i++)
ret.append(QString("0x%1 ").arg(out.at(i), 0, 16));
return ret;
}
QByteArray QAESEncryption::decode(const QByteArray rawText, const QByteArray key, const QByteArray iv)
{
if (m_mode == CBC && iv == NULL)
return NULL; //EMIT ERROR!
QByteArray expandedKey = expandKey(key);
qDebug() << rawText.size();
return invCipher(expandedKey, rawText);
}