Qt-AES/qaesencryption.cpp
2017-07-06 14:09:36 -07:00

396 lines
11 KiB
C++

#include "qaesencryption.h"
#include <QDebug>
/*
* Static Functions
* */
QByteArray QAESEncryption::Crypt(QAESEncryption::AES level, QAESEncryption::MODE mode, const QByteArray rawText, const QByteArray key, const QByteArray iv)
{
return QAESEncryption(level, mode).encode(rawText, key, iv);
}
QByteArray QAESEncryption::Decrypt(QAESEncryption::AES level, QAESEncryption::MODE mode, const QByteArray rawText, const QByteArray key, const QByteArray iv)
{
return QAESEncryption(level, mode).decode(rawText, key, iv);
}
QByteArray QAESEncryption::ExpandKey(QAESEncryption::AES level, QAESEncryption::MODE mode, const QByteArray key)
{
return QAESEncryption(level, mode).expandKey(key);
}
/*
* End Static function declarations
* */
/*
* Constructor
* */
QAESEncryption::QAESEncryption(QAESEncryption::AES level, QAESEncryption::MODE mode) : m_nb(4), m_blocklen(16), m_level(level), m_mode(mode)
{
m_state = NULL;
switch (level)
{
case AES_128: {
AES128 aes;
m_nk = aes.nk;
m_keyLen = aes.keylen;
m_nr = aes.nr;
m_expandedKey = aes.expandedKey;
}
break;
case AES_192: {
AES192 aes;
m_nk = aes.nk;
m_keyLen = aes.keylen;
m_nr = aes.nr;
m_expandedKey = aes.expandedKey;
}
break;
case AES_256: {
AES256 aes;
m_nk = aes.nk;
m_keyLen = aes.keylen;
m_nr = aes.nr;
m_expandedKey = aes.expandedKey;
}
break;
default: {
AES128 aes;
m_nk = aes.nk;
m_keyLen = aes.keylen;
m_nr = aes.nr;
m_expandedKey = aes.expandedKey;
qDebug() << "Defaulting to AES128";
}
break;
}
}
QByteArray QAESEncryption::expandKey(const QByteArray key)
{
int i, k;
quint8 tempa[4]; // Used for the column/row operations
QByteArray roundKey(key);
// The first round key is the key itself.
// ...
// All other round keys are found from the previous round keys.
//i == Nk
for(i = m_nk; i < m_nb * (m_nr + 1); i++)
{
{
tempa[0] = (quint8) roundKey.at((i-1) * 4 + 0);
tempa[1] = (quint8) roundKey.at((i-1) * 4 + 1);
tempa[2] = (quint8) roundKey.at((i-1) * 4 + 2);
tempa[3] = (quint8) roundKey.at((i-1) * 4 + 3);
}
if (i % m_nk == 0)
{
// This function shifts the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
k = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = k;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
tempa[0] = tempa[0] ^ Rcon[i/m_nk];
}
if (m_level == AES_256 && i % m_nk == 4)
{
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
}
roundKey.insert(i * 4 + 0, (quint8) roundKey.at((i - m_nk) * 4 + 0) ^ tempa[0]);
roundKey.insert(i * 4 + 1, (quint8) roundKey.at((i - m_nk) * 4 + 1) ^ tempa[1]);
roundKey.insert(i * 4 + 2, (quint8) roundKey.at((i - m_nk) * 4 + 2) ^ tempa[2]);
roundKey.insert(i * 4 + 3, (quint8) roundKey.at((i - m_nk) * 4 + 3) ^ tempa[3]);
}
return roundKey;
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
void QAESEncryption::addRoundKey(const quint8 round, const QByteArray expKey)
{
QByteArray::iterator it = m_state->begin();
for(int i=0; i < 16; ++i) {
it[i] = (quint8) it[i] ^ (quint8) expKey.at(round * m_nb * 4 + (i/4) * m_nb + (i%4));
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
void QAESEncryption::subBytes()
{
QByteArray::iterator it = m_state->begin();
for(int i = 0; i < 16; i++)
it[i] = getSBoxValue((quint8) it[i]);
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
void QAESEncryption::shiftRows()
{
QByteArray::iterator it = m_state->begin();
quint8 temp;
//Keep in mind that QByteArray is column-driven!!
//Shift 1 to left
temp = (quint8)it[1];
it[1] = (quint8)it[5];
it[5] = (quint8)it[9];
it[9] = (quint8)it[13];
it[13] = (quint8)temp;
//Shift 2 to left
temp = (quint8)it[2];
it[2] = (quint8)it[10];
it[10] = (quint8)temp;
temp = (quint8)it[6];
it[6] = (quint8)it[14];
it[14] = (quint8)temp;
//Shift 3 to left
temp = (quint8)it[3];
it[3] = (quint8)it[15];
it[15] = (quint8)it[11];
it[11] = (quint8)it[7];
it[7] = (quint8)temp;
}
// MixColumns function mixes the columns of the state matrix
//optimized!!
void QAESEncryption::mixColumns()
{
QByteArray::iterator it = m_state->begin();
quint8 tmp, tm, t;
for(int i = 0; i < 16; i += 4)
{
t = (quint8)it[i];
tmp = (quint8)it[i] ^ (quint8)it[i+1] ^ (quint8)it[i+2] ^ (quint8)it[i+3] ;
tm = xTime( (quint8)it[i] ^ (quint8)it[i+1] );
it[i] = (quint8)it[i] ^ (quint8)tm ^ (quint8)tmp;
tm = xTime( (quint8)it[i+1] ^ (quint8)it[i+2]);
it[i+1] = (quint8)it[i+1] ^ (quint8)tm ^ (quint8)tmp;
tm = xTime( (quint8)it[i+2] ^ (quint8)it[i+3]);
it[i+2] =(quint8)it[i+2] ^ (quint8)tm ^ (quint8)tmp;
tm = xTime((quint8)it[i+3] ^ (quint8)t);
it[i+3] =(quint8)it[i+3] ^ (quint8)tm ^ (quint8)tmp;
}
}
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
void QAESEncryption::invMixColumns()
{
QByteArray::iterator it = m_state->begin();
quint8 a,b,c,d;
for(int i = 0; i < 16; i+=4)
{
a = (quint8) it[i];
b = (quint8) it[i+1];
c = (quint8) it[i+2];
d = (quint8) it[i+3];
it[i] = (quint8) (multiply(a, 0x0e) ^ multiply(b, 0x0b) ^ multiply(c, 0x0d) ^ multiply(d, 0x09));
it[i+1] = (quint8) (multiply(a, 0x09) ^ multiply(b, 0x0e) ^ multiply(c, 0x0b) ^ multiply(d, 0x0d));
it[i+2] = (quint8) (multiply(a, 0x0d) ^ multiply(b, 0x09) ^ multiply(c, 0x0e) ^ multiply(d, 0x0b));
it[i+3] = (quint8) (multiply(a, 0x0b) ^ multiply(b, 0x0d) ^ multiply(c, 0x09) ^ multiply(d, 0x0e));
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
void QAESEncryption::invSubBytes()
{
QByteArray::iterator it = m_state->begin();
for(int i = 0; i < 16; ++i)
it[i] = getSBoxInvert((quint8) it[i]);
}
void QAESEncryption::invShiftRows()
{
QByteArray::iterator it = m_state->begin();
uint8_t temp;
//Keep in mind that QByteArray is column-driven!!
//Shift 1 to right
temp = (quint8)it[13];
it[13] = (quint8)it[9];
it[9] = (quint8)it[5];
it[5] = (quint8)it[1];
it[1] = (quint8)temp;
//Shift 2
temp = (quint8)it[10];
it[10] = (quint8)it[2];
it[2] = (quint8)temp;
temp = (quint8)it[14];
it[14] = (quint8)it[6];
it[6] = (quint8)temp;
//Shift 3
temp = (quint8)it[15];
it[15] = (quint8)it[3];
it[3] = (quint8)it[7];
it[7] = (quint8)it[11];
it[11] = (quint8)temp;
}
QByteArray QAESEncryption::ivXor(const QByteArray in, const QByteArray iv)
{
QByteArray::const_iterator it = in.begin();
QByteArray::const_iterator it_iv = iv.begin();
QByteArray ret;
for(int i = 0; i < m_blocklen; i++)
ret.insert(i,it[i] ^ it_iv[i]);
return ret;
}
// Cipher is the main function that encrypts the PlainText.
QByteArray QAESEncryption::cipher(const QByteArray expKey, const QByteArray in)
{
//m_state is the input buffer...
QByteArray output(in);
m_state = &output;
// Add the First round key to the state before starting the rounds.
addRoundKey(0, expKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(quint8 round = 1; round < m_nr; ++round)
{
subBytes();
shiftRows();
mixColumns();
addRoundKey(round, expKey);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
subBytes();
shiftRows();
addRoundKey(m_nr, expKey);
return output;
}
QByteArray QAESEncryption::invCipher(const QByteArray expKey, const QByteArray in)
{
//m_state is the input buffer.... handle it!
QByteArray output(in);
m_state = &output;
// Add the First round key to the state before starting the rounds.
addRoundKey(m_nr, expKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(quint8 round=m_nr-1; round>0 ; round--)
{
invShiftRows();
invSubBytes();
addRoundKey(round, expKey);
invMixColumns();
}
// The last round is given below.
// The MixColumns function is not here in the last round.
invShiftRows();
invSubBytes();
addRoundKey(0, expKey);
return output;
}
QByteArray QAESEncryption::encode(const QByteArray rawText, const QByteArray key, const QByteArray iv)
{
if (m_mode == CBC && (iv.isNull() || iv.size() != m_blocklen))
return QByteArray();
QByteArray ret;
QByteArray expandedKey = expandKey(key);
QByteArray alignedText(rawText);
QByteArray ivTemp(iv);
alignedText.append(getPadding(rawText.size(), m_blocklen), 0); //filling the array with zeros
for(int i=0; i < alignedText.size(); i+= m_blocklen)
{
if (m_mode == CBC)
alignedText.replace(i, m_blocklen, ivXor(alignedText.mid(i, m_blocklen),ivTemp));
ret.append(cipher(expandedKey, alignedText.mid(i, m_blocklen)));
if (m_mode == CBC)
ivTemp = ret.mid(i, m_blocklen);
}
return ret;
}
QByteArray QAESEncryption::decode(const QByteArray rawText, const QByteArray key, const QByteArray iv)
{
if (m_mode == CBC && (iv.isNull() || iv.size() != m_blocklen))
return QByteArray();
QByteArray ret;
QByteArray expandedKey = expandKey(key);
QByteArray alignedText(rawText);
QByteArray ivTemp(iv);
for(int i=0; i < alignedText.size(); i+= m_blocklen)
{
ret.append(invCipher(expandedKey, alignedText.mid(i, m_blocklen)));
if (m_mode == CBC) {
ret.replace(i, m_blocklen, ivXor(ret.mid(i, m_blocklen),ivTemp));
ivTemp = alignedText.mid(i, m_blocklen);
}
}
return ret;
}