#include "qaesencryption.h" #include // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM // The numbers below can be computed dynamically trading ROM for RAM - // This can be useful in (embedded) bootloader applications, where ROM is often limited. static const uint8_t sbox[256] = { //0 1 2 3 4 5 6 7 8 9 A B C D E F 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; static const uint8_t rsbox[256] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; // The round constant word array, Rcon[i], contains the values given by // x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) static const uint8_t Rcon[256] = { 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d }; inline uint8_t xTime(uint8_t x){ return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); } #define Multiply(x, y) \ ( ((y & 1) * x) ^ \ ((y>>1 & 1) * xTime(x)) ^ \ ((y>>2 & 1) * xTime(xTime(x))) ^ \ ((y>>3 & 1) * xTime(xTime(xTime(x)))) ^ \ ((y>>4 & 1) * xTime(xTime(xTime(xTime(x)))))) \ QAESEncryption::QAESEncryption(QAESEncryption::AES level, QAESEncryption::MODE mode) : m_level(level), m_mode(mode) { m_state->clear(); qDebug() << "WTF"; switch (level) { case AES_128: { AES128 aes; m_nk = aes.nk; m_keyLen = aes.keylen; m_nr = aes.nr; m_expandedKey = aes.expandedKey; qDebug() << "AES128"; } break; case AES_192: { AES192 aes; m_nk = aes.nk; m_keyLen = aes.keylen; m_nr = aes.nr; m_expandedKey = aes.expandedKey; } break; case AES_256: { AES256 aes; m_nk = aes.nk; m_keyLen = aes.keylen; m_nr = aes.nr; m_expandedKey = aes.expandedKey; } break; default: { AES128 aes; m_nk = aes.nk; m_keyLen = aes.keylen; m_nr = aes.nr; m_expandedKey = aes.expandedKey; qDebug() << "AES128"; } break; } } uint8_t QAESEncryption::getSBoxValue(uint8_t num) { return sbox[num]; } uint8_t QAESEncryption::getSBoxInvert(uint8_t num) { return rsbox[num]; } QByteArray QAESEncryption::expandKey(const QByteArray key) { int i, k; uint8_t tempa[4]; // Used for the column/row operations QByteArray roundKey(key); // The first round key is the key itself. for(i = 0; i < m_nk; ++i) { roundKey.insert((i * 4) + 0, key.at((i * 4) + 0)); roundKey.insert((i * 4) + 1, key.at((i * 4) + 1)); roundKey.insert((i * 4) + 2, key.at((i * 4) + 2)); roundKey.insert((i * 4) + 3, key.at((i * 4) + 3)); } // All other round keys are found from the previous round keys. //i == Nk for(; i < m_nb * (m_nr + 1); ++i) { { tempa[0] = roundKey.at((i-1) * 4 + 0); tempa[1] = roundKey.at((i-1) * 4 + 1); tempa[2] = roundKey.at((i-1) * 4 + 2); tempa[3] = roundKey.at((i-1) * 4 + 3); } if (i % m_nk == 0) { // This function shifts the 4 bytes in a word to the left once. // [a0,a1,a2,a3] becomes [a1,a2,a3,a0] // Function RotWord() { k = tempa[0]; tempa[0] = tempa[1]; tempa[1] = tempa[2]; tempa[2] = tempa[3]; tempa[3] = k; } // SubWord() is a function that takes a four-byte input word and // applies the S-box to each of the four bytes to produce an output word. // Function Subword() { tempa[0] = getSBoxValue(tempa[0]); tempa[1] = getSBoxValue(tempa[1]); tempa[2] = getSBoxValue(tempa[2]); tempa[3] = getSBoxValue(tempa[3]); } tempa[0] = tempa[0] ^ Rcon[i/m_nk]; } if (m_level == AES_256 && i % m_nk == 4) { // Function Subword() { tempa[0] = getSBoxValue(tempa[0]); tempa[1] = getSBoxValue(tempa[1]); tempa[2] = getSBoxValue(tempa[2]); tempa[3] = getSBoxValue(tempa[3]); } } roundKey.insert(i * 4 + 0, roundKey.at((i - m_nk) * 4 + 0) ^ tempa[0]); roundKey.insert(i * 4 + 1, roundKey.at((i - m_nk) * 4 + 1) ^ tempa[1]); roundKey.insert(i * 4 + 2, roundKey.at((i - m_nk) * 4 + 2) ^ tempa[2]); roundKey.insert(i * 4 + 3, roundKey.at((i - m_nk) * 4 + 3) ^ tempa[3]); } return roundKey; } // This function adds the round key to state. // The round key is added to the state by an XOR function. void QAESEncryption::addRoundKey(int round, const QByteArray expKey) { for(int i=0; i < 16; i++) m_state->insert(i, m_state->at(i) ^ expKey.at(round * m_nb * 4 + (i/4) * m_nb + (i%4))); } // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. void QAESEncryption::subBytes() { for(int i = 0; i < 16; i++) m_state->insert(i, getSBoxValue(m_state->at(i))); } // The ShiftRows() function shifts the rows in the state to the left. // Each row is shifted with different offset. // Offset = Row number. So the first row is not shifted. void QAESEncryption::shiftRows() { uint8_t temp; //Shift 1 temp = m_state->at(4); m_state->insert(4, m_state->at(4+1)); m_state->insert(4+1, m_state->at(4+2)); m_state->insert(4+2, m_state->at(4+3)); m_state->insert(4+3, temp); //Shift 2 temp = m_state->at(8); m_state->insert(8, m_state->at(8+2)); m_state->insert(8+2, temp); temp = m_state->at(8+1); m_state->insert(8+1, m_state->at(8+3)); m_state->insert(8+3, temp); //Shift 3 temp = m_state->at(12); m_state->insert(12, m_state->at(12+3)); m_state->insert(12+3, m_state->at(12+2)); m_state->insert(12+2, m_state->at(12+1)); m_state->insert(12+1, temp); } // MixColumns function mixes the columns of the state matrix //optimized!! void QAESEncryption::mixColumns() { uint8_t Tmp,Tm,t; for(int i = 0; i < 16; i+=4) { t = m_state->at(i); Tmp = m_state->at(i) ^ m_state->at(i+1) ^ m_state->at(i+2) ^ m_state->at(i+3) ; Tm = m_state->at(i) ^ m_state->at(i+1); Tm = xTime(Tm); m_state->insert(i, m_state->at(i) ^ Tm ^ Tmp); Tm = m_state->at(i+1) ^ m_state->at(i+2); Tm = xTime(Tm); m_state->insert(i+1, m_state->at(i+1) ^ Tm ^ Tmp); Tm = m_state->at(i+2) ^ m_state->at(i+3); Tm = xTime(Tm); m_state->insert(i+2, m_state->at(i+2) ^ Tm ^ Tmp); Tm = m_state->at(i+3) ^ t; Tm = xTime(Tm); m_state->insert(i+3, m_state->at(i+3) ^ Tm ^ Tmp); } } // MixColumns function mixes the columns of the state matrix. // The method used to multiply may be difficult to understand for the inexperienced. // Please use the references to gain more information. void QAESEncryption::invMixColumns() { uint8_t a,b,c,d; for(int i = 0; i < 16; i+=4) { a = m_state->at(i); b = m_state->at(i+1); c = m_state->at(i+2); d = m_state->at(i+3); m_state->insert(i, Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09)); m_state->insert(i+1, Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d)); m_state->insert(i+2, Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b)); m_state->insert(i+3, Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e)); } } // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. void QAESEncryption::invSubBytes() { for(int i = 0; i < 16; ++i) m_state->insert(i, getSBoxInvert(m_state->at(i))); } void QAESEncryption::invShiftRows() { uint8_t temp; //Shift 1 to right temp = m_state->at(4+3); m_state->insert(4+3, m_state->at(4+2)); m_state->insert(4+2, m_state->at(4+1)); m_state->insert(4+1, m_state->at(4)); m_state->insert(4, temp); //Shift 2 temp = m_state->at(8+2); m_state->insert(8+2, m_state->at(8)); m_state->insert(8, temp); temp = m_state->at(8+3); m_state->insert(8+3, m_state->at(8+1)); m_state->insert(8+1, temp); //Shift 3 temp = m_state->at(12+3); m_state->insert(12+3, m_state->at(12)); m_state->insert(12, m_state->at(12+1)); m_state->insert(12+1, m_state->at(12+2)); m_state->insert(12+2, temp); } // Cipher is the main function that encrypts the PlainText. QByteArray QAESEncryption::cipher(const QByteArray expKey, const QByteArray in) { //m_state is the input buffer.... handle it! QByteArray output(in); m_state = &output; uint8_t round = 0; qDebug() << "Cyper " << QString(expKey); // Add the First round key to the state before starting the rounds. addRoundKey(0, expKey); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr-1 rounds are executed in the loop below. for(round = 1; round < m_nr; ++round) { subBytes(); shiftRows(); mixColumns(); addRoundKey(round, expKey); } // The last round is given below. // The MixColumns function is not here in the last round. subBytes(); shiftRows(); addRoundKey(m_nr, expKey); qDebug() << "Cyper " << QString(output); return output; } void QAESEncryption::invCipher() { /*uint8_t round=0; // Add the First round key to the state before starting the rounds. addRoundKey(m_nr); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr-1 rounds are executed in the loop below. for(round=m_nr-1;round>0;round--) { invShiftRows(); invSubBytes(); addRoundKey(round); invMixColumns(); } // The last round is given below. // The MixColumns function is not here in the last round. invShiftRows(); invSubBytes(); addRoundKey(0);*/ } QByteArray QAESEncryption::encode(const QByteArray rawText, const QByteArray key, const QByteArray iv) { //if (m_mode == CBC && iv == NULL) // return NULL; //EMIT ERROR! qDebug() << "YAY"; QByteArray expandedKey = expandKey(key); // The next function call encrypts the PlainText with the Key using AES algorithm. return cipher(expandedKey, rawText); } /* QByteArray QAESEncryption::decode(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length) { // Copy input to output, and work in-memory on output memcpy(output, input, length); state = (state_t*)output; // The KeyExpansion routine must be called before encryption. Key = key; KeyExpansion(); InvCipher(); } */