#include "qaesencryption.h" #include #define Multiply(x, y) \ ( ((y & 1) * x) ^ \ ((y>>1 & 1) * xTime(x)) ^ \ ((y>>2 & 1) * xTime(xTime(x))) ^ \ ((y>>3 & 1) * xTime(xTime(xTime(x)))) ^ \ ((y>>4 & 1) * xTime(xTime(xTime(xTime(x)))))) \ QAESEncryption::QAESEncryption(QAESEncryption::AES level, QAESEncryption::MODE mode) : m_level(level), m_mode(mode) { m_state = NULL; switch (level) { case AES_128: { AES128 aes; m_nk = aes.nk; m_keyLen = aes.keylen; m_nr = aes.nr; m_expandedKey = aes.expandedKey; qDebug() << "AES128"; } break; case AES_192: { AES192 aes; m_nk = aes.nk; m_keyLen = aes.keylen; m_nr = aes.nr; m_expandedKey = aes.expandedKey; } break; case AES_256: { AES256 aes; m_nk = aes.nk; m_keyLen = aes.keylen; m_nr = aes.nr; m_expandedKey = aes.expandedKey; } break; default: { AES128 aes; m_nk = aes.nk; m_keyLen = aes.keylen; m_nr = aes.nr; m_expandedKey = aes.expandedKey; } break; } } QByteArray QAESEncryption::expandKey(const QByteArray key) { int i, k; quint8 tempa[4]; // Used for the column/row operations QByteArray roundKey(key); qDebug() << "Key expansion before" << roundKey.size(); // The first round key is the key itself. /*for(i = 0; i < m_nk; ++i) { roundKey.replace((i * 4) + 0, (quint8) key.at((i * 4) + 0)); roundKey.replace((i * 4) + 1, (quint8) key.at((i * 4) + 1)); roundKey.replace((i * 4) + 2, (quint8) key.at((i * 4) + 2)); roundKey.replace((i * 4) + 3, (quint8) key.at((i * 4) + 3)); }*/ // All other round keys are found from the previous round keys. //i == Nk for(i = m_nk; i < m_nb * (m_nr + 1); i++) { { tempa[0] = (quint8) roundKey.at((i-1) * 4 + 0); tempa[1] = (quint8) roundKey.at((i-1) * 4 + 1); tempa[2] = (quint8) roundKey.at((i-1) * 4 + 2); tempa[3] = (quint8) roundKey.at((i-1) * 4 + 3); } if (i % m_nk == 0) { // This function shifts the 4 bytes in a word to the left once. // [a0,a1,a2,a3] becomes [a1,a2,a3,a0] // Function RotWord() { k = tempa[0]; tempa[0] = tempa[1]; tempa[1] = tempa[2]; tempa[2] = tempa[3]; tempa[3] = k; } // SubWord() is a function that takes a four-byte input word and // applies the S-box to each of the four bytes to produce an output word. // Function Subword() { tempa[0] = getSBoxValue(tempa[0]); tempa[1] = getSBoxValue(tempa[1]); tempa[2] = getSBoxValue(tempa[2]); tempa[3] = getSBoxValue(tempa[3]); } tempa[0] = tempa[0] ^ Rcon[i/m_nk]; } if (m_level == AES_256 && i % m_nk == 4) { // Function Subword() { tempa[0] = getSBoxValue(tempa[0]); tempa[1] = getSBoxValue(tempa[1]); tempa[2] = getSBoxValue(tempa[2]); tempa[3] = getSBoxValue(tempa[3]); } } roundKey.insert(i * 4 + 0, roundKey.at((i - m_nk) * 4 + 0) ^ tempa[0]); roundKey.insert(i * 4 + 1, roundKey.at((i - m_nk) * 4 + 1) ^ tempa[1]); roundKey.insert(i * 4 + 2, roundKey.at((i - m_nk) * 4 + 2) ^ tempa[2]); roundKey.insert(i * 4 + 3, roundKey.at((i - m_nk) * 4 + 3) ^ tempa[3]); } qDebug() << "Key expansion after" << roundKey.size(); return roundKey; } // This function adds the round key to state. // The round key is added to the state by an XOR function. void QAESEncryption::addRoundKey(quint8 round, const QByteArray expKey) { QByteArray::iterator it = m_state->begin(); for(int i=0; i < 16; i++) it[i] = (quint8)it[i] ^ (quint8)expKey.at(round * m_nb * 4 + (i/4) * m_nb + (i%4)); } // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. void QAESEncryption::subBytes() { QByteArray::iterator it = m_state->begin(); for(int i = 0; i < 16; i++) it[i] = getSBoxValue((quint8) it[i]); } // The ShiftRows() function shifts the rows in the state to the left. // Each row is shifted with different offset. // Offset = Row number. So the first row is not shifted. void QAESEncryption::shiftRows() { QByteArray::iterator it = m_state->begin(); quint8 temp; //Shift 1 temp = (quint8) it[4]; it[4] = it[4+1]; it[4+1] = it[4+2]; it[4+2] = it[4+3]; it[4+3] = temp; //Shift 2 temp = (quint8) it[8]; it[8] = it[8+2]; it[8+2] = temp; temp = it[8+1]; it[8+1] = it[8+3]; it[8+3] = temp; //Shift 3 temp = (quint8) it[12]; it[12] = it[12+3]; it[12+3] = it[12+2]; it[12+2] = it[12+1]; it[12+1] = temp; } // MixColumns function mixes the columns of the state matrix //optimized!! void QAESEncryption::mixColumns() { QByteArray::iterator it = m_state->begin(); quint8 Tmp,Tm,t; for(int i = 0; i < 16; i+=4) { t = (quint8) it[i]; Tmp = (quint8) it[i] ^ (quint8) it[i+1] ^ (quint8) it[i+2] ^ (quint8) it[i+3] ; Tm = (quint8) it[i] ^ (quint8) it[i+1]; Tm = xTime(Tm); it[i] = (quint8) it[i] ^ Tm ^ Tmp; Tm = (quint8) it[i+1] ^ (quint8) it[i+2]; Tm = xTime(Tm); it[i+1] = (quint8) it[i+1] ^ Tm ^ Tmp; Tm = (quint8) it[i+2] ^ (quint8) it[i+3]; Tm = xTime(Tm); it[i+2] = (quint8) it[i+2] ^ Tm ^ Tmp; Tm = (quint8) it[i+3] ^ t; Tm = xTime(Tm); it[i+3] = (quint8) it[i+3] ^ Tm ^ Tmp; } } // MixColumns function mixes the columns of the state matrix. // The method used to multiply may be difficult to understand for the inexperienced. // Please use the references to gain more information. void QAESEncryption::invMixColumns() { QByteArray::iterator it = m_state->begin(); quint8 a,b,c,d; for(int i = 0; i < 16; i+=4) { a = (quint8) it[i]; b = (quint8) it[i+1]; c = (quint8) it[i+2]; d = (quint8) it[i+3]; it[i] = (quint8) (Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09)); it[i+1] = (quint8) (Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d)); it[i+2] = (quint8) (Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b)); it[i+3] = (quint8) (Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e)); } } // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. void QAESEncryption::invSubBytes() { QByteArray::iterator it = m_state->begin(); for(int i = 0; i < 16; ++i) it[i] = getSBoxInvert(it[i]); } void QAESEncryption::invShiftRows() { QByteArray::iterator it = m_state->begin(); uint8_t temp; //Shift 1 to right temp = (quint8) it[4+3]; it[4+3] = it[4+2]; it[4+2] = it[4+1]; it[4+1] = it[4]; it[4] = temp; //Shift 2 temp = (quint8) it[8+2]; it[8+2] = it[8]; it[8] = temp; temp = (quint8) it[8+3]; it[8+3] = it[8+1]; it[8+1] = temp; //Shift 3 //PROBABLY WRONG!! temp = (quint8) it[12+3]; it[12+3] = it[12]; it[12] = it[12+1]; it[12+1] = it[12+2]; it[12+2] = temp; } // Cipher is the main function that encrypts the PlainText. QByteArray QAESEncryption::cipher(const QByteArray expKey, const QByteArray in) { //m_state is the input buffer.... handle it! QByteArray output(in); m_state = &output; quint8 round = 0; // Add the First round key to the state before starting the rounds. addRoundKey(0, expKey); qDebug() << print(output); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr-1 rounds are executed in the loop below. for(round = 1; round < m_nr; ++round) { subBytes(); shiftRows(); mixColumns(); addRoundKey(round, expKey); } // The last round is given below. // The MixColumns function is not here in the last round. subBytes(); shiftRows(); addRoundKey(m_nr, expKey); return output; } QByteArray QAESEncryption::invCipher(const QByteArray expKey, const QByteArray in) { //m_state is the input buffer.... handle it! QByteArray output(in); m_state = &output; uint8_t round = 0; // Add the First round key to the state before starting the rounds. addRoundKey(m_nr, expKey); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr-1 rounds are executed in the loop below. for(round=m_nr-1;round>0;round--) { invShiftRows(); invSubBytes(); addRoundKey(round, expKey); invMixColumns(); } // The last round is given below. // The MixColumns function is not here in the last round. invShiftRows(); invSubBytes(); addRoundKey(0, expKey); return output; } QByteArray QAESEncryption::encode(const QByteArray rawText, const QByteArray key, const QByteArray iv) { if (m_mode == CBC && iv == NULL) return NULL; //EMIT ERROR! //qDebug() << "key" << print(key); QByteArray expandedKey = expandKey(key); // The next function call encrypts the PlainText with the Key using AES algorithm. return cipher(expandedKey, rawText); } QString QAESEncryption::print(QByteArray in) { QString ret=""; for (int i=0; i < in.size();i++) ret.append(QString("0x%1 ").arg(QString::number((quint8)in.at(i), 16))); return ret; } QByteArray QAESEncryption::decode(const QByteArray rawText, const QByteArray key, const QByteArray iv) { if (m_mode == CBC && iv == NULL) return NULL; //EMIT ERROR! QByteArray expandedKey = expandKey(key); return invCipher(expandedKey, rawText); }