
Melkor fuzzing rules based on specification violations of:
- Tool Interface Standard (TIS) ELF Specification 1.2 (May 1995)

- ELF-64 Object File Format 1.5 (May 1998)

and:
- Ideas & Considerations

- ELF Parsing Patterns

Alejandro Hernández H. (nitr0us)

@nitr0usmx

http://www.brainoverflow.org

Number of Rules

HDR Header 19

PHT Program Header Table 22

SHT Section Header Table 37

STRS String Table 3

DYN Dynamic Section 18

NOTE Note Section 4

SYM Symbols Table 15

REL Relocations Table 3

HASH Hash Table 2

ENV OS Environment Variables 3

126

Metadata

Total:

Rule Specification Violation description ELF metadata Page

hdr1
A program header table, if present, tells the system how to create a process image. Files used to build a

process image (execute a program) must have a program header table;
Executable ELF without a PHT

- HDR

e_type = ET_EXEC | ET_DYN

e_phoff = 0

e_phentsize = 0

e_phoff = Valid offset

e_phnum = 0

e_phentsize = Valid number

16

hdr2

A section header table contains information describing the file's sections. Every section has an entry in the

table;

Files used during linking must have a section header table;

Relocatable file without a SHT

Empty SHT

- HDR

e_type = ET_REL

e_shoff = 0

e_shentsize = 0

e_shoff = Valid offset

e_shnum = 0

e_shentsize = Valid number

16

hdr3

e_type This member identifies the object file type.

Values from ET_LOPROC through ET_HIPROC (inclusive) are reserved for processor-specific semantics.

Other values are reserved and will be assigned to new object file types as necessary

ELF type set to normal values (< 5),

invalid and uncommon values (>= 5)

or zero.

- HDR

e_type < 5

e_type >= 5 <= ET_HIPROC

e_type = 0

19

hdr4 e_machine This member's value specifies the required architecture for an individual file ELF machine with invalid / uncommon values
- HDR

e_machine > 16

e_machine = 0

19

hdr5 e_entry If the file has no associated entry point, this member holds zero.
Invalid entry point (0 or out of range)

Some point in kernel-land

- HDR

e_entry = XXX

e_entry = 0

19

hdr6
e_phoff This member holds the program header table's file offset in bytes. If the file has no program header

table, this member holds zero.
PHT out of bounds

- HDR

e_phoff = XXX
19

hdr7 e_ehsize This member holds the ELF header's size in bytes. Random ELF header size
- HDR

e_ehsize = XXX
19

hdr8

e_phentsize This member holds the size in bytes of one entry in the file's program header table; all entries are

the same size.

e_phnum This member holds the number of entries in the program header table. Thus the product of

e_phentsize and e_phnum gives the table's size in bytes. If a file has no program header table, e_phnum

holds the value zero.

Combination of low and high values

e_phentsize to zero

- HDR

e_phentsize = XXX

e_phnum = XXX

e_phentsize = 0

20

hdr9

e_shentsize This member holds a section header's size in bytes. A section header is one entry in the section

header table; all entries are the same size.

e_shnum This member holds the number of entries in the section header table. Thus the product of

e_shentsize and e_shnum gives the section header table's size in bytes. If a file has no section header table,

e_shnum holds the value zero.

Combination of low and high values

e_shentsize to zero

- HDR

e_shentsize = XXX

e_shnum = XXX

e_shentsize = 0

20

hdr10
e_shstrndx This member holds the section header table index of the entry associated with the section name

string table. If the file has no section name string table, this member holds the value SHN_UNDEF.
Index to zero and out of bounds

- HDR

e_shstrndx = XXX

e_shstrndx = 0

20

hdr11 EI_CLASS The next byte, e_ident[EI_CLASS], identifies the file's class, or capacity. ELF class with invalid / uncommon values
- HDR

e_ident[EI_CLASS] > ELFCLASS64

e_ident[EI_CLASS] = 0

21

hdr12 EI_DATA Byte e_ident[EI_DATA] specifies the data encoding of the processor-specific data in the object file. ELF encoding with invalid / uncommon values
- HDR

e_ident[EI_DATA] > ELFDATA2MSB

e_ident[EI_DATA] = 0

21

hdr13
EI_VERSION Byte e_ident[EI_VERSION] specifies the ELF header version number. Currently, this value

must be EV_CURRENT, as explained above for e_version.
ELF version different than EV_CURRENT

- HDR

e_version > EV_CURRENT

e_version = 0

e_ident[EI_VERSION] > EV_CURRENT

e_ident[EI_VERSION] = 0

21

hdr14

The ELF header's e_shoff member gives the byte offset from the beginning of the file to the section header

table; e_shnum tells how many entries the section header table contains; e_shentsize gives the size in bytes

of each entry

SHT offset out of bounds

Combination of low and high values for

sh_num and e_shentsize

- HDR

e_shoff = XXX

e_shnum = XXX

e_shentsize = XXX

23

hdr15 SHN_LORESERVE This value specifies the lower bound of the range of reserved indexes. ELF file with e_shnum = SHN_LORESERVE
- HDR

e_shnum = SHN_LORESERVE
23

pht1
p_type This member tells what kind of segment this array element describes or how to interpret the array

element's information.

Change the program header type with random

common / invalid values

Change the program headers type to cero

- PHT

p_type = XXX

p_type = 0

40

pht2
p_offset This member gives the offset from the beginning of the file at which the first byte of the segment

resides.

Out of bounds

Offset unaligned

- PHT

(p_offset = XXX) % PAGESIZE = 0

(p_offset = XXX) % PAGESIZE != 0

40

pht3

p_vaddr This member gives the virtual address at which the first byte of the segment resides in memory.

p_paddr On systems for which physical addressing is relevant, this member is reserved for the segment's

physical address. This member requires operating system specific information, which is described in the

appendix at the end of Book III.

Valid p_vaddr but invalid p_paddr and vice

versa

Invalid address

Some point in kernel-land

Addresses unaligned

- PHT

p_vaddr = p_vaddr

p_paddr = XXX

p_vaddr = XXX

p_paddr = p_paddr

(p_vaddr = XXX) % PAGESIZE = 0

(p_paddr = XXX) % PAGESIZE = 0

(p_vaddr = XXX) % PAGESIZE != 0

(p_paddr = XXX) % PAGESIZE != 0

40

pht4

p_filesz This member gives the number of bytes in the file image of the segment; it may be zero.

p_memsz This member gives the number of bytes in the memory image of the segment; it may be zero.

Bytes in memory but not in file

Bytes in file but not in memory

Loadable segment with cero bytes

A big value of bytes in memory

- PHT

p_filesz = 0

(p_memsz = XXX) % PAGESIZE = 0

p_filesz = XXX

p_memsz = 0

p_filesz = 0

p_memsz = 0

p_memsz = 0xffffffff

40

pht5

p_align Loadable process segments must have congruent values for p_vaddr and p_offset, modulo the page

size. This member gives the value to which the segments are aligned in memory and in the file. Values 0 and

1 mean that no alignment is required. Otherwise, p_align should be a positive, integral power of 2, and p_addr

should equal p_offset, modulo p_align.

p_align not power of two

(3,5,7,9,10,11,12,13,14,15,17, etc.)

- PHT

p_align = PAGESIZE - 1

p_align = PAGESIZE +1

p_align = XXX

40

pht6
PT_LOPROC 0x70000000

PT_HIPROC 0x7fffffff

Program headers' types between these two

constants

- PHT

p_type >= PT_LOPROC <= PT_HIPROC
41

pht7

PT_LOAD The array element specifies a loadable segment, described by p_filesz and p_memsz. The bytes

from the file are mapped to the beginning of the memory segment. If the segment's memory size (p_memsz)

is larger than the file size (p_filesz), the "extra'' bytes are defined to hold the value 0 and to follow the

segment's initialized area. The file size may not be larger than the memory size.

More file image bytes than in memory

A big value of bytes in file image

- PHT

p_filesz > p_memsz

p_filesz = 0xffffffff

41

ELF Specification 1.2 Violations
XXX: Value to be fuzzed with semi-valid semantics

pht8
Padding is present, if necessary, to ensure 4-byte alignment for the descriptor. Such padding is not included

in namesz.
Make the note section's size unaligned

- PHT

p_type = PT_NOTE

p_filesz % 4 != 0

42

pht9

PT_INTERP The array element specifies the location and size of a null-terminated path name to invoke as an

interpreter. This segment type is meaningful only for executable files (though it may occur for shared objects);

it may not occur more than once in a file.

Point the path to itself

Delete the PT_INTERP program header from

the PHT

Put two more PT_INTERP headers to the PHT

- PHT

e_type = ET_EXEC | ET_DYN

p_type != PT_INTERP

String replacement to point to itself

Algorithm to add two PT_INTERP before

and after the original one

72

pht10

When the system creates loadable segments' memory images, it gives access permissions as specified in the

p_flags member. All bits included in the PF_MASKPROC mask are reserved for processor-specific

semantics.

Fuzz the flags combining the common values

Add the PF_MASKPROC to the flags

- PHT

p_flags = XXX

p_flags |= PF_MASKPROC

73

pht11 For example, typical text segments have read and execute —but not write —permissions. Locate the text segment and set the write flag
- PHT

p_flags |= PF_W
74

pht12
A PT_DYNAMIC program header element points at the .dynamic section, explained in "Dynamic Section"

below.

Change the PT_DYNAMIC header to point

somewhere else

- PHT

p_type = PT_DYNAMIC

p_offset = XXX

p_vaddr = XXX

75

pht13
PT_SHLIB This segment type is reserved but has unspecified semantics. Programs that contain an array

element of this type do not conform to the ELF specification for UNIX System V.
Add a PT_SHLIB at the end of the PHT

- PHT

PHT[e_phnum - 1] = PT_SHLIB

72

pht19

PT_PHDR The array element, if present, specifies the location and size of the program header table itself,

both in the file and in the memory image of the program. This segment type may not occur more than once in

a file. Moreover, it may occur only if the program header table is part of the memory image of the program. If

it is present, it must precede any loadable segment entry. See "Program Interpreter" in the appendix at the

end of Book III for further information.

Delete the PT_PHDR from the PHT

Create an extra PT_PHT right after the first

one found in the PHT

Move the PT_PHDR to the end of the PHT

(after the PT_LOAD segments)

- PHT

p_type != PT_PHDR

PHT[x].p_type = PT_PHDR

PHT[x+1].p_type = PT_PHDR

PHT[e_phnum - 1] = PT_PHDR

41

pht20
Loadable segment entries in the program header table appear in ascending order, sorted on the p_vaddr

member.

Re-order the PT_LOAD segments in

descending order

Re-order the PT_LOAD entries randomly

- PHT

Algorithm to re-order the PT_LOAD entries'

p_vaddr address (descending or randomly)

41

pht21
PT_INTERP If it is present, it must precede any loadable segment entry. See "Program Interpreter'' below for

further information.

Move the PT_INTERP to the end of the PHT

(after the PT_LOAD segments)

- PHT

Algorithm to relocate the PT_INTERP to the

end of the PHT. The program header in the

end will take place where the original

PT_INTERP is.

PHT[PT_INTERP] = PHT[e_phnum - 1]

PHT[e_phnum - 1] = PT_INTERP

72

sht1
sh_name This member specifies the name of the section. Its value is an index into the section header string

table section [see "String Table'' below], giving the location of a null-terminated string.
A sh_name out of bounds

- SHT

sh_name = XXX
24

sht2
sh_addr If the section will appear in the memory image of a process, this member gives the address at which

the section's first byte should reside. Otherwise, the member contains 0.

Invalid address

Some point in kernel-land

- SHT

sh_addr = XXX
24

sht3

sh_offset This member's value gives the byte offset from the beginning of the file to the first byte in the

section. One section type, SHT_NOBITS described below, occupies no space in the file, and its sh_offset

member locates the conceptual placement in the file.

A sh_offset out of bounds
- SHT

sh_offset = XXX
25

sht4

sh_size This member gives the section's size in bytes. Unless the section type is SHT_NOBITS, the section

occupies sh_size bytes in the file.

Sections in a file may not overlap. No byte in a file resides in more than one section.

Combination of low and high values
- SHT

sh_size = XXX
25

sht5

sh_addralign That is, the value of sh_addr must be congruent to 0, modulo the value of sh_addralign.

Currently, only 0 and positive integral powers of two are allowed. Values 0 and 1 mean the section has no

alignment constraints.

sh_addralign not power of two

(3,5,7,9,10,11,12,13,14,15,17, etc.)

sh_addralign = PAGESIZE +/- 1

- SHT

sh_addralign = XXX

sh_addralign = PAGESIZE - 1

sh_addralign = PAGESIZE + 1

25

sht6
sh_entsize Some sections hold a table of fixed-size entries, such as a symbol table. For such a section, this

member gives the size in bytes of each entry.

Combination of low and high values

Zero

- SHT

sh_entsize = XXX

sh_entsize = 0

25

sht7 A section header's sh_type member specifies the section's semantics.
Change the section types with random

common / invalid values

- SHT

sh_type = XXX
25

sht8

SHT_LOPROC through SHT_HIPROC Values in this inclusive range are reserved for processor-specific

semantics.

Section types between SHT_LOUSER and SHT_HIUSER may be used by the application, without conflicting

with current or future system-defined section types.

Section types set to these four constants

- SHT

sh_type = SHT_LOPROC + 1

sh_type = SHT_HIPROC

sh_type = SHT_LOUSER + 1

sht_type = SHT_HIUSER

27

sht9
The section header for index 0 (SHN_UNDEF) exists, even though the index marks undefined section

references. This entry holds the following. Figure 1-10. Section Header Table Entry: Index 0
SHT index 0 with random / uncommon values

- SHT

SHT[0]: sh_* = XXX
27

sht10 A section header's sh_flags member holds 1-bit flags that describe the section's attributes.

sh_flags with random combinations of the

valid flags

sh_flags with invalid / undefined values

- SHT

sh_flags =

SHF_WRITE|SHF_ALLOC|SHF_EXECINS

TR|SHF_MASKPROC

sh_flags &= ~ SHF_WRITE

sh_flags &= ~ SHF_ALLOC

sh_flags &= ~ SHF_EXECINSTR

sh_flags = XXX

27

sht11

SHT_DYNAMIC: sh_link = The section header index of the string table used by entries in the section; sh_info

= 0

SHT_HASH: sh_link = The section header index of the symbol table to which the hash table

applies; sh_info = 0

sh_link pointing to a valid SHT index but not

to a string table

sh_link pointing to 0

sh_link out of bounds

sh_info with random values

- SHT

sh_type = SHT_DYNAMIC

sh_link = (1 to e_shnum - 1) !=

SHT_STRTAB

sh_link = XXX

sh_info = (1 to e_shnum - 1)

sh_info = XXX

sh_type = (SHT_HASH|SHT_GNU_HASH)

sh_link = (1 to e_shnum - 1) !=

(SHT_SYMTAB|SHT_DYNSYM)

sh_link = XXX

sh_info = (1 to e_shnum - 1)

sh_info = XXX

28

sht12
SHT_REL and SHT_RELA: sh_link = The section header index of the associated symbol table; sh_info = The

section header index of the section to which the relocation applies.

sh_link and sh_info pointing to a valid SHT

index but not to a symbol table nor relocation

sh_link out of bounds

sh_link pointing to 0

sh_info out of bounds

sh_info pointing to 0

- SHT

sh_type = (SHT_REL|SHT_RELA)

sh_link = (1 to e_shnum - 1) !=

(SHT_SYMTAB|SHT_DYNSYM)

sh_link = XXX

sh_info = (1 to e_shnum - 1)

sh_info = XXX

28

sht13
SHT_SYMTAB and SHT_DYNSYM: sh_link = The section header index of the associated string table; sh_info

= One greater than the symbol table index of the last local symbol (binding STB_LOCAL).

sh_link and sh_info with random values

sh_link out of bounds

sh_link pointing to 0

sh_info out of bounds

sh_info pointing to 0

- SHT

sh_type = (SHT_SYMTAB|SHT_DYNSYM)

sh_link = (1 to e_shnum - 1) !=

(SHT_STRTAB)

sh_link = XXX

sh_info = (1 to e_shnum - 1)

sh_info = XXX

66

sht14

.bss This section holds uninitialized data that contribute to the program's memory image. By definition, the

system initializes the data with zeros when the program begins to run. The section occupies no file space, as

indicated by the section type, SHT_NOBITS.

Fuzz its attributes

Set a random size

- SHT

sh_type = SHT_NOBITS

sh_flags = XXX

sh_size = XXX

29

sht15 .data and .data1 These sections hold initialized data that contribute to the program's memory image. Fuzz its attributes

- SHT

sh_type = XXX

sh_flags = XXX

sh_size = XXX

29

sht16 .hash This section holds a symbol hash table. Fuzz its attributes

- SHT

sh_type = (SHT_HASH | SHT_GNU_HASH)

sh_flags = XXX

sh_size = XXX

sh_entsize = XXX

29

sht17

.debug This section holds information for symbolic debugging. The contents are unspecified. All section

names with the prefix .debug are reserved for future use.

.line This section holds line number information for symbolic debugging, which describes the correspondence

between the source program and the machine code. The contents are unspecified.

Fuzz the attributes

Fuzz the debugging information (DWARF).

GCC adds debug_*

- SHT

sh_name = ".debug_*"

sh_type = XXX

sh_flags = XXX

sh_size = XXX

sh_entsize = XXX

Fuzz its content. Debugging information.

DWARF. [NOT IMPLEMENTED YET]

29

sht18
.dynamic This section holds dynamic linking information and has attributes such as SHF_ALLOC and

SHF_WRITE. Whether the SHF_WRITE bit is set is determined by the operating system and processor.
Clear those flags

- SHT

sh_type = SHT_DYNAMIC

sh_flags &= ~ SHF_ALLOC

sh_flags &= ~ SHF_WRITE

29

sht19
.rodata and .rodata1 These sections hold read-only data that typically contribute to a non-writable segment in

the process image. See "Program Header'' in Chapter 2 for more information.
Fuzz its attributes

- SHT

sh_type = XXX

sh_flags = XXX

sh_size = XXX

sh_entsize = XXX

30

sht20

.note This section holds information in the format that is described in the "Note Section'' in Chapter 2.

Padding is present, if necessary, to ensure 4-byte alignment for the descriptor. Such padding is not included

in namesz.

Fuzz its attributes

Sections's size less or equal the size of the

struct Nhdr.

Section's size unaligned

- SHT

sh_type = SHT_NOTE

sh_flags = XXX

sh_size = sizeof(Elf32_Nhdr | Elf64_Nhdr)

sh_size % 4 != 0

sh_addralign = XXX

30

sht21

.strtab This section holds strings, most commonly the strings that represent the names associated with symbol

table entries. If a file has a loadable segment that includes the symbol string table, the section's attributes will

include the SHF_ALLOC bit; otherwise, that bit will be off.

Fuzz its attributes

- SHT

sh_type = SHT_STRTAB

sh_flags = XXX

sh_size = XXX

sh_entsize = XXX

sh_addralign = XXX

30

sht22

.symtab This section holds a symbol table, as "Symbol Table'' in this chapter describes. If a file has a

loadable segment that includes the symbol table, the section's attributes will include the SHF_ALLOC bit;

otherwise, that bit will be off.

Fuzz its attributes

- SHT

sh_type = SHT_SYMTAB | SHT_DYNSYM

sh_flags = XXX

sh_size = XXX

sh_entsize = XXX

sh_addralign = XXX

30

sht23 .text This section holds the "text,'' or executable instructions, of a program.
Change the section type to !=

SHT_PROGBITS and fuzz its attributes

- SHT

sh_type != SHT_PROGBITS

sh_flags &= ~ SHF_ALLOC

sh_flags &= ~ SHF_EXECINSTR

sh_flags = XXX

sh_flags = 0

30

sht24 .fini & .init
Delete the SHF_EXECINSTR flag and/or

SHF_ALLOC

- SHT

sh_type = SHT_PROGBITS

sh_flags &= ~ SHF_ALLOC

sh_flags &= ~ SHF_EXECINSTR

sh_flags = XXX

sh_flags = 0

67

sht25
.interp This section holds the path name of a program interpreter. If the file has a loadable segment that

includes the section, the section's attributes will include the SHF_ALLOC bit; otherwise, that bit will be off.

Modify its attributes

Point the path to itself

- SHT

sh_type = SHT_NULL

sh_flags &= ~ SHF_ALLOC

sh_flags = XXX

String replacement to point to itself

67

sht26 .got SHT_PROGBITS SHF_ALLOC+SHF_WRITE Remove the SHF_WRITE permission
- SHT

sh_type = SHT_PROGBITS

sh_flags &= ~ SHF_WRITE

90

sht27 .plt SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

Remove the SHF_EXECINSTR permission

Leave the SHF_EXECINSTR permission but

patch the second instruction (jmp) in the PLT

to the original entrypoint. random address or

.init or .fini:

Disassembly of section .plt:

08048470 <printf@plt-0x10>:

 8048470: ff 35 f8 9f 04 08 pushl

0x8049ff8

 8048476: ff 25 fc 9f 04 08 jmp

*0x8049ffc

- SHT

sh_type = SHT_PROGBITS

sh_flags &= ~ SHF_EXECINSTR

plt + 6 = jmp entrypoint (HDR.e_entry)

plt + 6 = jmp _init (.init.sh_addr)

plt + 6 = jmp _fini (.fini.sh_addr)

plt + 6 = XXX

90

sht28
An empty string table section is permitted; its section header's sh_size member would contain

zero. Non-zero indexes are invalid for an empty string table.

Modify an string table different than

e_shstrndx so this will be an empty string table

or the offset at the end of the file with a

random size

- SHT

sh_type = SHT_STRTAB

shndx != e_shstrndx

sh_size = 0

sh_type = SHT_STRTAB

shndx != e_shstrndx

sh_offset = stat_info.st_size

sh_size = 0x1337

31

sht29 SHT_HASH All objects participating in dynamic linking must contain a symbol hash table. Delete the hash table
- SHT

sh_type != (SHT_HASH |

SHT_GNU_HASH)

66

sht30 An object file may have more than one section with the same name
Add the same section name more than two

times in the file

- SHT

sh_name = .text | .data | .got | .got.plt | .bss
30

str1

sh_name This member specifies the name of the section. Its value is an index into the section header string

table section [see "String Table'' below], giving the location of a null-terminated string.

These single-byte characters use the 7-bit ASCII character set. Character values outside the range of 0 to 127

may occupy one or more bytes, according to the character encoding.

Fuzz the strings inside without deleting the

NULL bytes

- STR

sh_type = SHT_STRTAB

Chars > 0x7f

24

str2

String table sections hold null-terminated character sequences, commonly called strings.

The first byte, which is index zero, is defined to hold a null character. Likewise, a string table's last byte is

defined to hold a null character, ensuring null termination for all strings.

Delete some NULL bytes between strings

Change the first byte in the string table

Delete the NULL byte from the end

- STR

sh_type = SHT_STRTAB

string_table[x] != 0

string_table[0] = XXX

string_table[sh_size - 1] > 0x7f

31

str3 String table sections hold null-terminated character sequences, commonly called strings.
Fuzz every section that contains a string table

with format string vulnerability triggers

- STR

sh_type = SHT_STRTAB

Replace the strings with format string

vulnerability triggers such as %x or %n

without deleting the NULL byte

31

note1

Note Section - Sometimes a vendor or system builder needs to mark an object file with special information

that other programs will check for conformance, compatibility, etc. Sections of type SHT_NOTE and program

header elements of type PT_NOTE can be used for this purpose. The note information in sections and

program header elements holds any number of entries, each of which is an array of 4-byte words in the

format of the target processor.

namesz and name The first namesz bytes in name contain a null-terminated character representation of the

entry's owner or originator. There is no formal mechanism for avoiding name conflicts. By convention,

vendors use their own name, such as "XYZ Computer Company,'' as the identifier. If no name is present,

namesz contains 0.

namesz with a high value
- NOTE

namesz = XXX
42

note2
The first namesz bytes in name contain a null-terminated character representation of the entry's owner or

originator.

The NULL bytes in name will be overwritten

Some format strings within name

- NOTE

name = XXX

42

note3

descsz and desc The first descsz bytes in desc hold the note descriptor. ELF places no constraints on a

descriptor's contents. If no descriptor is present, descsz contains 0. Padding is present, if necessary, to

ensure 4-byte alignment for the next note entry. Such padding is not included in descsz.

Fuzz the first descsz bytes in desc

descsz with a random value

- NOTE

desc = XXX

descsz = XXX

42

note4

type This word gives the interpretation of the descriptor. Each originator controls its own types; multiple

interpretations of a single type value may exist. Thus, a program must recognize both the name and the type

to "understand" a descriptor. Types currently must be non-negative. ELF does not define what descriptors

mean.

Put in type negative values (>= 0x80000000)
- NOTE

type >= 0x80000000
42

dyn1

DT_NEEDED This element holds the string table offset of a null-terminated string, giving the name of a

needed library. The offset is an index into the table recorded in the DT_STRTAB entry.

DT_SONAME This element holds the string table offset of a null-terminated string, giving the name of the

shared object. The offset is an index into the table recorded in the DT_STRTAB entry.

DT_RPATH This element holds the string table offset of a null-terminated search library search path string,

discussed in "Shared Object Dependencies". The offset is an index into the table recorded in the

DT_STRTAB entry.

d_val pointing to an out of bounds index

Pointing to an invalid name / path.

- DYN

d_tag = DT_NEEDED | DT_SONAME |

DT_RPATH

d_val = XXX

80

dyn2

DT_PLTRELSZ This element holds the total size, in bytes, of the relocation entries associated with the

procedure linkage table. If an entry of type DT_JMPREL is present, a DT_PLTRELSZ must accompany it.

DT_RELSZ This element holds the total size, in bytes, of the DT_REL relocation table.

DT_RELASZ This element holds the total size, in bytes, of the DT_RELA relocation table.

DT_STRSZ This element holds the size, in bytes, of the string table.

Less bytes in buffer size to trigger memory

corruption vulnerabilities

High values to allocate big memory chunks

Zero

- DYN

d_tag = DT_PLTRELSZ | DT_RELSZ |

DT_RELASZ | DT_STRSZ

d_val = XXX

d_val = 0

80

dyn3

DT_RELAENT This element holds the size, in bytes, of the DT_RELA relocation entry.

DT_RELENT This element holds the size, in bytes, of the DT_REL relocation entry.

DT_SYMENT This element holds the size, in bytes, of a symbol table entry.

Combination of low and high values

Zero

- DYN

d_tag = DT_RELAENT | DT_RELENT |

DT_SYMENT

d_val = XXX

d_val = 0

80

dyn4
DT_PLTGOT This element holds an address associated with the procedure linkage table and/or the global

offset table.

Pointer to an invalid address and to some

point in kernel-land

- DYN

d_tag = DT_PLTGOT

d_ptr = XXX

80

dyn5

DT_HASH This element holds the address of the symbol hash table, described in "Hash Table". This hash

table refers to the symbol table referenced by the DT_SYMTAB element.

DT_SYMTAB This element holds the address of the symbol table, described in Chapter 1, with Elf32_Sym

entries for the 32-bit class of files.

DT_HASH entry with valid values but

DT_SYMTAB with an invalid address or to

some point in kernel-land, and vice versa.

- DYN

d_tag = DT_HASH | DT_GNU_HASH

d_ptr = d_ptr

d_ptr = XXX

d_tag = DT_SYMTAB

d_ptr = d_ptr

d_ptr = XXX

80

dyn6

DT_INIT This element holds the address of the initialization function, discussed in "Initialization and

Termination Functions" below.

DT_FINI This element holds the address of the termination function, discussed in "Initialization and

Termination Functions" below.

Make the address to point to some point in

kernel-land

Make the address to point to the executable's

entrypoint

Endless loop through DT_INIT to DT_FINI and

DT_FINI to DT_INIT

- DYN

d_tag = (DT_INIT | DT_FINI)

d_ptr = XXX

d_ptr = HDR.e_entry

d_tag = DT_INIT

d_ptr = DT_FINI.d_ptr

d_tag = DT_FINI

d_ptr = DT_INIT.d_ptr

80

dyn7

DT_SYMBOLIC This element's presence in a shared object library alters the dynamic linker's symbol

resolution algorithm for references within the library. Instead of starting a symbol search with the executable

file, the dynamic linker starts from the shared object itself. If the shared object fails to supply the referenced

symbol, the dynamic linker then searches the executable file and other shared objects as usual.

DT_TEXTREL This member's absence signifies that no relocation entry should cause a modification to a non-

writable segment, as specified by the segment permissions in the program header table. If this member is

present, one or more relocation entries might request modifications to a non-writable segment, and the

dynamic linker can prepare accordingly.

Replace the DT_DEBUG for thes ones

- DYN

d_tag = DT_DEBUG

d_tag = DT_SYMBOLIC | DT_TEXTREL

81

dyn8

DT_PLTREL This member specifies the type of relocation entry to which the procedure linkage table refers.

The d_val member holds DT_REL or DT_RELA, as appropriate. All relocations in a procedure linkage table

must use the same relocation.

Set to unknown types
- DYN

d_tag = DT_PLTREL

d_val != (DT_REL | DT_RELA)

81

dyn9

DT_BIND_NOW If present in a shared object or executable, this entry instructs the dynamic linker to process

all relocations for the object containing this entry before transferring control to the program. The presence of

this entry takes precedence over a directive to use lazy binding for this object when specified through the

environment or via dlopen.

Replace the DT_DEBUG for this one
- DYN

d_tag = DT_BIND_NOW
81

dyn10

If a shared object name has one or more slash (/) characters anywhere in the name, such as /usr/lib/lib2

above or directory/file, the dynamic linker uses that string directly as the path name. If the name has no

slashes, such as lib1 above, three facilities specify shared object path searching, with the following

precedence:

• First, the dynamic array tag DT_RPATH may give a string that holds a list of directories,

separated by colons (:). For example, the string /home/dir/lib:/home/dir2/lib:

Pointing to an fuzzed path

- DYN

d_tag = DT_RPATH | DT_RUNPATH

d_val = XXX

82

dyn11
The relocation type specifies which bits to change and how to calculate their values. The Intel architecture

uses only Elf32_Rel relocation entries, the field to be relocated holds the addend.

Change the rellocation types to DT_RELA for

32-bit files and vice versa

- DYN

d_tag = DT_PLTREL

d_val = DT_REL | DT_RELA

93

dyn12

DT_PLTGOT On the Intel architecture, this entry's d_ptr member gives the address of the first entry in the

global offset table. As mentioned below, the first three global offset table entries are reserved, and two are

used to hold procedure linkage table information.

The table's entry zero is reserved to hold the address of the dynamic structure, referenced with the symbol

_DYNAMIC. This allows a program, such as the dynamic linker, to find its own dynamic structure without

having yet processed its relocation entries. This is especially important for the dynamic linker, because it

must initialize itself without relying on other programs to relocate its memory image.

Patch the three addresses in GOT to point to

invalid addresses or key addresses in kernel-

land

$ dissector -s hydra | grep -i _DYNAMIC

[191] 0x080a1f08 ... _DYNAMIC

$ dissector -a hydra | grep -i got

[22] .got 0x080a1ff0 0x0058ff0

[23] .got.plt 0x080a1ff4 0x0058ff4

[13] DT_PLTGOT 0x080a1ff4

$ objdump -s -j .got.plt hydra | head

Contents of section .got.plt:

 80a1ff4 081f0a08 00000000 00000000

The first address is _DYNAMIC. Not always

modify this one.

- DYN

d_tag = DT_PLTGOT

*(d_ptr++) = XXX

*(d_ptr++) = XXX

*(d_ptr) = XXX

99

dyn13

DT_JMPREL If present, this entries d_ptr member holds the address of relocation entries associated solely

with the procedure linkage table. Separating these relocation entries lets the dynamic linker ignore them

during process initialization, if lazy binding is enabled. If this entry is present, the related entries of types

DT_PLTRELSZ and DT_PLTREL must also be present.

Leave the DT_JMPREL entry and delete

DT_PLTRELSZ

- DYN

d_tag = DT_PLTRELSZ

d_tag != DT_PLTRELSZ

81

dyn14

DT_RELA This element holds the address of a relocation table, described in Chapter 1. Entries in the table

have explicit addends, such as Elf32_Rela for the 32-bit file class. If this element is present, the dynamic

structure must also have DT_RELASZ and DT_RELAENT elements.

DT_REL This element is similar to DT_RELA, except its table has implicit addends, such as Elf32_Rel for the

32-bit file class. If this element is present, the dynamic structure must also have DT_RELSZ and

DT_RELENT elements.

Leave the DT_RELA entry and delete

DT_RELASZ and/or DT_RELAENT

Leave the DT_REL entry and delete

DT_RELSZ and DT_RELENT

- DYN

d_tag = DT_RELASZ | DT_RELAENT

d_tag != DT_RELASZ

d_tag != DT_RELAENT

d_tag = DT_RELSZ | DT_RELENT

d_tag != DT_RELSZ

d_tag != DT_RELENT

80

dyn15 DT_NULL An entry with a DT_NULL tag marks the end of the _DYNAMIC array. Delete the NULL entry
- DYN

d_tag != DT_NULL
80

sym1

Symbol Table

An object file's symbol table holds information needed to locate and relocate a program's symbolic definitions

and references. A symbol table index is a subscript into this array. Index 0 both designates the first entry in

the table and serves as the undefined symbol index.

Name Value

STN_UNDEF 0

First entry different of STN_UNDEF with

fuzzed values

- SYM

ST[0].st_name != STN_UNDEF

ST[0].* = XXX

32

sym2
st_name This member holds an index into the object file's symbol string table, which holds the character

representations of the symbol names.
A st_name out of bounds

- SYM

st_name = XXX
32

sym3
st_value This member gives the value of the associated symbol. Depending on the context,

this may be an absolute value, an address, and so on; details appear below.

Invalid address

Some point in kernel-land

High values

- SYM

st_value = XXX
32

sym4
st_size Many symbols have associated sizes. For example, a data object's size is the number

of bytes contained in the object. This member holds 0 if the symbol has no size or an unknown size.
Combination of low and high values

- SYM

st_size = XXX
32

sym5

st_shndx Every symbol table entry is "defined'' in relation to some section; this member holds the relevant

section header table index. As Figure 1-7 and the related text describe, some section indexes indicate special

meanings.

Index to zero and out of bounds

Set to a random but valid index within the

SHT.

- SYM

st_shndx = 0 - HDR->e_shnum

st_shndx = XXX

orcSYM->st_size = getElf_Word();

33

sym6
STT_SECTION The symbol is associated with a section. Symbol table entries of this type exist primarily for

relocation and normally have STB_LOCAL binding.
Change the STB_LOCAL binding type.

- SYM

ELF_ST_TYPE(st_info) = STT_SECTION

ELF_ST_BIND(st_info) != STB_LOCAL

34

sym7
STT_FILE A file symbol has STB_LOCAL binding, its section index is SHN_ABS, and it precedes the other

STB_LOCAL symbols for the file, if it is present.

Change the STB_LOCAL binding type and

st_shndx != SHN_ABS

- SYM

ELF_ST_TYPE(st_info) = STT_FILE

ELF_ST_BIND(st_info) != STB_LOCAL

st_shndx != SHN_ABS

34

sym8
In relocatable files, st_value holds alignment constraints for a symbol whose section index

is SHN_COMMON.

For those symbols whose st_shndx =

SHN_COMMON, fuzz st_value with

inconsistent alignment values

- SYM

e_type = ET_REL

st_shndx = SHN_COMMON

st_value != 1,2,4,8,16,32,64,128,256,512…

35

sym9
In relocatable files, st_value holds a section offset for a defined symbol. That is,

st_value is an offset from the beginning of the section that st_shndx identifies.

For those symbols whose st_shndx !=

SHN_COMMON, fuzz st_value with values

out of bounds

- SYM

e_type = ET_REL

st_shndx != SHN_COMMON

st_value = XXX

35

sym10 In executable and shared object files, st_value holds a virtual address.
Invalid address

Some point in kernel-land

- SYM

e_type = ET_EXEC | ET_DYN

st_value = XXX

35

sym11

If an executable file contains a reference to a function defined in one of its associated shared objects, the

symbol table section for that file will contain an entry for that symbol. The st_shndx member of that symbol

table entry contains SHN_UNDEF. This signals to the dynamic linker that the symbol definition for that

function is not contained in the executable file itself.

Low chances to set st_shndx to a value

different than SHN_UNDEF

- SYM

e_type = ET_EXEC | ET_DYN

st_shndx != SHN_UNDEF

91

sym12

If that symbol has been allocated a procedure linkage table entry in the executable file, and the st_value

member for that symbol table entry is non-zero, the value will contain the virtual address of the first

instruction of that procedure linkage table entry. Otherwise, the st_value member contains zero

For those symbols with st_shndx =

SHN_UNDEF, set the st_value to an invalid

pointer or at some point to kernel-land

- SYM

st_shndx = SHN_UNDEF

st_value != 0

st_value = XXX

91

sym13

st_info This member specifies the symbol's type and binding attributes. A list of the values

and meanings appears below. The following code shows how to manipulate the values.

#define ELF32_ST_BIND(i) ((i)>>4)

#define ELF32_ST_TYPE(i) ((i)&0xf)

#define ELF32_ST_INFO(b,t) (((b)<<4)+((t)&0xf))

Combination of low and high values

Specific combinations to escape from

common symbol types and binding types

- SYM

st_info = XXX
32

rel1

r_offset This member gives the location at which to apply the relocation action. For a relocatable file, the

value is the byte offset from the beginning of the section to the storage unit affected by the relocation. For an

executable file or a shared object, the value is the virtual address of the storage unit affected by the

relocation.

In relocatable files r_offset out of bounds

In exec and shared objects, r_offset will hold

invalid addresses and addresses in kernel-

land

- REL

e_type = ET_REL

r_offset = XXX

e_type = ET_EXEC | ET_DYN

r_offset = XXX

36

rel2

r_info This member gives both the symbol table index with respect to which the relocation must be made, and

the type of relocation to apply. Relocation types are processor-specific; descriptions of their behavior appear

in the processor supplement. When the text in the processor supplement refers to a relocation entry's

relocation type or symbol table index, it means the result of applying ELF32_R_TYPE or ELF32_R_SYM,

respectively, to the entry's r_info member.

#define ELF32_R_SYM(i) ((i)>>8)

#define ELF32_R_TYPE(i) ((unsigned char)(i))

#define ELF32_R_INFO(s,t) (((s)<<8)+(unsigned char)(t))

Combination of low and high values

Specific combinations to escape from the

macros

Make that ELF32_R_SYM() returns an invalid

section index (its related symbol table)

- REL

r_info = XXX

ELF_R_SYM(r_info) > e_shnum

36

rel3
r_addend This member specifies a constant addend used to compute the value to be stored into the

relocatable field.

r_addend is Sword (Signed Word).

Combination of high and low values.

Negative values

- REL

r_addend >= 0x80000000

r_addend = XXX

36

env1

If the process environment contains a variable named LD_BIND_NOW with a non-null value, the dynamic

linker processes all relocation before transferring control to the program. For example, all the following

environment entries would specify this behavior.

• LD_BIND_NOW=1

• LD_BIND_NOW=on

• LD_BIND_NOW=off

Otherwise, LD_BIND_NOW either does not occur in the environment or has a null value. The dynamic linker

is permitted to evaluate procedure linkage table entries lazily, thus avoiding symbol resolution and relocation

overhead for functions that are not called.

Fuzz the environment variable before

executing the malformed ELFs or testing the

programs

- ENVIRON

export LD_BIND_NOW = XXX
77

env2

Second, a variable called LD_LIBRARY_PATH in the process environment [see exec(BA_OS)] may hold a

list of directories as above, optionally followed by a semicolon (;) and another directory list. The following

values would be equivalent to the previous example:

• LD_LIBRARY_PATH=/home/dir/lib:/home/dir2/lib:

• LD_LIBRARY_PATH=/home/dir/lib;/home/dir2/lib:

• LD_LIBRARY_PATH=/home/dir/lib:/home/dir2/lib:;

Fuzz the environment variable before

executing the malformed ELFs or testing the

programs

- ENVIRON

export LD_LIBRARY_PATH = XXX
82

hash1 The bucket array contains nbucket entries, and the chain array contains nchain entries; indexes start at 0. nbucket and nchain with high and low values
- HASH

nbucket = XXX

nchain = XXX

84

hash2
Both bucket and chain hold symbol table indexes. Chain table entries parallel the symbol table. The number

of symbol table entries should equal nchain;

Take the original indexes and set them to out

of bounds values

- HASH

nbucket = nbucket

nchain = nchain

bucket[1..nbucket-1] = XXX

chain[1..nchain-1] = XXX

84

Rule Specification Violation description ELF metadata Page

hdr16

e_ident[EI_ABIVERSION] identifies the version of the ABI for which the object is prepared. This field is used to

distinguish among incompatible versions of an ABI. The interpretation of this version number is dependent on the

ABI identified by the EI_OSABI field.

For applications conforming to the System V ABI, third edition, this field should contain 0.

Set to uncommon values
- HDR

e_ident[EI_ABIVERSION] = XXX
4

hdr17

Table 5. Operating System and ABI Identifiers, e_ident[EI_OSABI]

Name Value Meaning

ELFOSABI_SYSV 0 System V ABI

ELFOSABI_HPUX 1 HP-UX operating system

ELFOSABI_STANDALONE 255 Standalone (embedded) application

Set to uncommon values
- HDR

e_ident[EI_OSABI] = XXX
5

hdr18

Table 6. Object File Types, e_type

Name Value Meaning

ET_LOOS 0xFE00 Environment-specific use

ET_HIOS 0xFEFF

Set to these types

- HDR

e_type = ET_LOOS + 1

e_type = ET_HIOS

5

pht14

Table 16. Segment Types, p_type (Continued)

Name Value Meaning

PT_LOOS 0x60000000 Environment-specific use

PT_HIOS 0x6FFFFFFF

Set some segments to these types
- PHT

p_type = (PT_LOOS | PT_HIOS)
13

pht15

Table 17. Segment Attributes, p_flags

Name Value Meaning

PF_MASKOS 0x00FF0000 These flag bits are reserved for

environment-specific use

Enable this flag in some segments
- PHT

p_flags |= PF_MASKOS
13

sht31

Table 8. Section Types, sh_type

Name Value Meaning

SHT_LOOS 0x60000000 Environment-specific use

SHT_HIOS 0x6FFFFFFF

Set some sections to these types
- SHT

sh_type = (SHT_LOOS | SHT_HIOS)
7

sht32

Table 9. Section Attributes, sh_flags

Name Value Meaning

SHF_MASKOS 0x0F000000 Environment-specific use

Enable this flag in some sections
- SHT

sh_flags |= SHF_MASKOS
8

dyn16

Table 18. Dynamic Table Entries

Name Value d_un Meaning

DT_INIT_ARRAY 25 d_ptr Pointer to an array of pointers to initialization functions.

DT_FINI_ARRAY 26 d_ptr Pointer to an array of pointers to termination functions.

Pointer to an invalid address and to some point

in kernel-land

The first entry normally is a helper function in

GLIBC, so, fuzz:

DT_INIT_ARRAY[1] and/or

DT_FINI_ARRAY[1] if DT_INIT_ARRAYSZ >

sizeof(void *) with invalid pointers

- DYN

d_tag = DT_INIT_ARRAY |

DT_FINI_ARRAY

*(++d_ptr) = XXX

15

dyn17
DT_INIT_ARRAYSZ 27 d_val Size, in bytes, of the array of initialization functions.

DT_FINI_ARRAYSZ 28 d_val Size, in bytes, of the array of termination functions.

Combination of low and high values

d_val % 4 shouldn't be zero

- DYN

d_tag = DT_INIT_ARRAYSZ |

DT_FINI_ARRAYSZ

d_val += (4 | 8)

d_val % 4 != 0

15

sym14

Table 14. Symbol Bindings

Name Value Meaning

STB_LOOS 10 Environment-specific use

STB_HIOS 12

Table 15. Symbol Types (Continued)

Name Value Meaning

STT_LOOS 10 Environment-specific use

STT_HIOS 12

Set some entries to these types

- SYM

ELF_ST_BIND(st_info) = (STB_LOOS |

STB_HIOS)

ELF_ST_TYPE(st_info) = (STT_LOOS |

STT_HIOS)

10

ELF-64 File Format Violations

XXX: Value to be fuzzed with semi-valid semantics

Rule Idea / Consideration Description ELF metadata

hdr19

OPENBSD

kern/exec_elf.c:129:#define ELF_MAX_VALID_PHDR 32

kern/exec_elf.c:205: if (ehdr->e_phnum > ELF_MAX_VALID_PHDR)

Modify the PHT to have 32 program headers
- HDR

e_phnum = 32

pht16 Modify some security specific features seen in the PHT such as executable stack, PAX flags or RELRO. Fuzz the metadate related to these features

- PHT

p_type = PT_GNU_STACK |

PT_PAX_FLAGS | PT_GNU_RELRO

p_* = XXX

pht17 Static binaries add PT_TLS From the PHT fuzz its values

- PHT

p_type = PT_TLS

p_* = XXX

pht18
GNU extension PT_GNU_EH_FRAME sorted table of unwind information. GCC uses this table to find the

appropriate handler for an exception.

Fuzz p_filesz bytes from p_offset with invalid memory

addresses / kernel addresses

- PHT

p_type = PT_GNU_EH_FRAME

p_* = XXX

pht22 Static ELFs don't have PT_DYNAMIC

Add a PT_DYNAMIC entry with invalid information

Add a PT_DYNAMIC entry pointing to anywhere in the

file

- PHT

Algorithm to find the PT_DYNAMIC entry and

fuzz its values. If not found, look for a

PT_NULL entry and set its p_type to

PT_DYNAMIC.

sht33 A section header's sh_type member specifies the section's semantics. Also include the SHT_GNU_* types
- SHT

sh_type = SHT_GNU_*

sht34 Seen that all the SHF_WRITE and SHF_EXECINSTR need the SHF_ALLOC Clear the SHF_ALLOC of those sections
- SHT

sh_flags &= ~ SHF_ALLOC

sht35 .init_array and .fini_array are arrays of function pointers to functions
Overwrite the pointers with invalid addresses or

pointers in kernel-land

- SHT

sh_type = (SHT_INIT_ARRAY |

SHT_FINI_ARRAY)

(sh_offset) = jmp entrypoint (HDR.e_entry)

(sh_offset) = jmp _init (.init.sh_addr)

(sh_offset) = jmp _fini (.fini.sh_addr)

(sh_offset) = XXX

sht36
Trusting in sizes such as:

 for(l = 0; l < shdr->sh_size / shdr->sh_entsize; l++, rel++){

To make loops run one more time:

Add +1 to sh_size

Substract -1 to sh_entsize

- SHT

sh_size += 1

sh_entsize -= 1

sht37 Static binaries add .tdata and .tbss sections
From the SHT delete the SHF_TLS flag from all the

sections

- SHT

sh_name ".tdata" | ".tbss"

sh_flags &= ~ SHF_TLS

dyn18 Set d_tag to high / random / negative values (> 0x7fffffff)

Low chances to fuzz d_tag.

Random or negative values

Set to:

DT_LOOS 0x6000000d

DT_HIOS 0x6ffff000

DT_LOPROC 0x70000000

DT_HIPROC 0x7fffffff

- DYN

d_tag = XXX

d_tag > 0x7fffffff

d_tag = DT_LOOS | DT_HIOS |

DT_LOPROC | DT_HIPROC

sym15
ELF_ST_VISIBILITY() uses st_other which is mentioned in the original specification as unused:

st_other This member currently holds 0 and has no defined meaning.
Fuzz its content randomly

- SYM

st_other = XXX

env3 The testing script should allow to fuzz the LD_PRELOAD environment variable
Fuzz the environment variable before executing the

malformed ELFs or testing the programs

- ENVIRON

export LD_PRELOAD = XXX

Ideas & Considerations

XXX: Value to be fuzzed with semi-valid semantics

ELF Parsing Patterns

Software Pattern

Linux Kernel 3.13.6

arch/sh/boot/Makefile:15:CONFIG_PAGE_OFFSET ?= 0x80000000

arch/x86/include/asm/page_types.h:30:#define PAGE_OFFSET ((unsigned long)__PAGE_OFFSET)

arch/x86/include/asm/page_32_types.h:16:#define __PAGE_OFFSET _AC(CONFIG_PAGE_OFFSET, UL)

arch/x86/include/asm/page_64_types.h:33:#define __PAGE_OFFSET _AC(0xffff880000000000, UL)

fs/binfmt_elf.c:66:#define ELF_MIN_ALIGN PAGE_SIZE

fs/binfmt_elf.c:73:#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))

fs/binfmt_elf.c:74:#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))

fs/binfmt_elf.c:75:#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))

#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)

static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)

{

...

 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -

 ELF_PAGESTART(cmds[first_idx].p_vaddr);

 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);

static unsigned long elf_map(struct file *filep, unsigned long addr,

 struct elf_phdr *eppnt, int prot, int type,

 unsigned long total_size)

{

 unsigned long map_addr;

 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);

 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);

 addr = ELF_PAGESTART(addr);

 size = ELF_PAGEALIGN(size);

 if (total_size) {

ClamAV 0.98.1

 /* Read rest of 64-bit header */

 if(fmap_readn(map, file_hdr->hdr32.pad, sizeof(struct elf_file_hdr32), ELF_HDR_SIZEDIFF)

 != ELF_HDR_SIZEDIFF) {

 if(phnum) {

 program_hdr = (struct elf_program_hdr32 *) cli_calloc(phnum, sizeof(struct elf_program_hdr32));

 if(!program_hdr) {

 cli_errmsg("ELF: Can't allocate memory for program headers\n");

 for(i = 0; i < phnum; i++) {

 err = 0;

 if(fmap_readn(map, &program_hdr[i], phoff, sizeof(struct elf_program_hdr32)) != sizeof(struct elf_program_hdr32))

 err = 1;

Malelficus 1.0.0

 if (-1 == fstat(bin->fd, &st_info)) {

 error = errno;

 MALELF_DEBUG_ERROR("Failed to stat file '%s'.",

 bin->fname);

 return error;

 }

 if (0 == st_info.st_size && !is_creat) {

 return MALELF_EEMPTY_FILE;

 }

 bin->size = st_info.st_size;

 bin->mem = mmap(0,

 bin->size,

 PROT_READ|PROT_WRITE,

 MAP_PRIVATE,

 bin->fd,

 0);

Binutils 2.24 readelf

 else if (elf_header.e_shstrndx != SHN_UNDEF

 && elf_header.e_shstrndx >= elf_header.e_shnum)

 printf (_(" <corrupt: out of range>"));

 /* Read in the string table, so that we have names to display. */

 if (elf_header.e_shstrndx != SHN_UNDEF

 && elf_header.e_shstrndx < elf_header.e_shnum)

 {

 section = section_headers + elf_header.e_shstrndx;

 if (section->sh_size != 0)

 {

 string_table = (char *) get_data (NULL, file, section->sh_offset,

 1, section->sh_size,

 _("string table"));

 string_table_length = string_table != NULL ? section->sh_size : 0;

Linux Kernel 3.13.6

/*

 * This is used to ensure we don't load something for the wrong architecture.

 */

#define elf_check_arch_ia32(x) \

 (((x)->e_machine == EM_386) || ((x)->e_machine == EM_486))

 if (!elf_check_arch(interp_elf_ex))

 goto out;

Binutils 2.24 readelf

 if ((elf_header.e_machine == EM_ALPHA

 || elf_header.e_machine == EM_S390

 || elf_header.e_machine == EM_S390_OLD)

 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)

 hash_ent_size = 8;

Memory Mapping (Filesystem to Memory)

Section Header Table's String Table Location

Validation of Class, Machine and Endianness

ClamAV 0.98.1

 default:

 cli_dbgmsg("ELF: Unknown ELF class (%u)\n", file_hdr->hdr64.e_ident[4]);

 return CL_EFORMAT;

 /* Need to know to endian convert */

 if(file_hdr->hdr64.e_ident[5] == 1) {

 /* Now endian convert, if needed */

 if(conv) {

 file_hdr->hdr64.e_entry = EC64(file_hdr->hdr64.e_entry, conv);

 file_hdr->hdr64.e_phoff = EC64(file_hdr->hdr64.e_phoff, conv);

 file_hdr->hdr64.e_shoff = EC64(file_hdr->hdr64.e_shoff, conv);

Binutils 2.24 readelf

 for (i = 0, section = section_headers;

 i < elf_header.e_shnum;

 i++, section++)

 {

find_section (const char * name)

{

 unsigned int i;

 for (i = 0; i < elf_header.e_shnum; i++)

 if (streq (SECTION_NAME (section_headers + i), name))

 return section_headers + i

find_section_by_address (bfd_vma addr)

{

 unsigned int i;

 for (i = 0; i < elf_header.e_shnum; i++)

 {

 Elf_Internal_Shdr *sec = section_headers + i;

 if (elf_header.e_shnum == 0)

 {

 /* PR binutils/12467. */

 if (elf_header.e_shoff != 0)

 warn (_("possibly corrupt ELF file header - it has a non-zero"

 " section header offset, but no section headers\n"));

ClamAV 0.98.1

 shnum = file_hdr->e_shnum;

 cli_dbgmsg("ELF: Number of sections: %d\n", shnum);

 if(ctx && (shnum > 2048)) {

 cli_dbgmsg("ELF: Number of sections > 2048, skipping\n");

 shentsize = file_hdr->e_shentsize;

 /* Sanity check */

 if(shentsize != sizeof(struct elf_section_hdr32)) {

 cli_dbgmsg("ELF: shentsize != sizeof(struct elf_section_hdr32)\n");

 if(ctx && DETECT_BROKEN) {

 cli_append_virus(ctx, "Heuristics.Broken.Executable");

Malelficus 1.0.0

 for (i = 0; i < shnum; i++) {

 Elf32_Shdr *s = §ions[i];

 malelf_table_add_int_value(&table, i);

 malelf_table_add_hex_value(&table, s->sh_addr);

 malelf_table_add_int_value(&table, s->sh_offset);

 MALELF_CHECK(malelf_shdr_get_mstype, &shdr, &ms_type, i);

 malelf_table_add_str_value(&table, ms_type.name);

 if (s->sh_type != SHT_NULL && shstrndx != 0x00) {

 for (i = host_ehdr->e_shnum; i-- > 0; host_shdr++) {

 if (host_shdr->sh_offset >= parasite_end_offset) {

 host_shdr->sh_offset += MALELF_PAGE_SIZE;

Linux Kernel 3.13.6

 if (interp_elf_ex->e_phnum < 1 ||

 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))

 goto out;

 eppnt = elf_phdata;

 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {

 for (i = 0; i < loc->elf_ex.e_phnum; i++) {

 if (elf_ppnt->p_type == PT_INTERP) {

 elf_ppnt = elf_phdata;

 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)

 if (elf_ppnt->p_type == PT_GNU_STACK) {

 if (elf_ppnt->p_flags & PF_X)

 executable_stack = EXSTACK_ENABLE_X;

 else

 executable_stack = EXSTACK_DISABLE_X;

 break;

 }

Binutils 2.24 readelf

 for (i = 0, segment = program_headers;

 i < elf_header.e_phnum;

 i++, segment++)

 {

 printf (_("\n Section to Segment mapping:\n"));

 printf (_(" Segment Sections...\n"));

 for (i = 0; i < elf_header.e_phnum; i++)

 {

Section Header Table

Program Header Table

ClamAV 0.98.1

 phnum = file_hdr->e_phnum;

 cli_dbgmsg("ELF: Number of program headers: %d\n", phnum);

 if(phnum > 128) {

 cli_dbgmsg("ELF: Suspicious number of program headers\n");

 if(phnum && entry) {

 phentsize = file_hdr->e_phentsize;

 /* Sanity check */

 if(phentsize != sizeof(struct elf_program_hdr32)) {

 cli_dbgmsg("ELF: phentsize != sizeof(struct elf_program_hdr32)\n");

 if(ctx && DETECT_BROKEN) {

 cli_append_virus(ctx, "Heuristics.Broken.Executable");

 for(i = 0; i < phnum; i++) {

 if(EC32(ph[i].p_vaddr, conv) <= vaddr && EC32(ph[i].p_vaddr, conv) + EC32(ph[i].p_memsz, conv) > vaddr) {

 found = 1;

Malelficus 1.0.0

 for (phdr = host_phdr, i = host_ehdr->e_phnum;

 i-- > 0;

 phdr++) {

Binutils 2.24 readelf

 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)

 {

 if (psym->st_shndx < elf_header.e_shnum)

 if (section->sh_entsize == 0)

 {

 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),

 SECTION_NAME (section));

 continue;

 }

 printf (_("\nSymbol table '%s' contains %lu entries:\n"),

 SECTION_NAME (section),

 (unsigned long) (section->sh_size / section->sh_entsize));

 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);

...

 for (si = 0, psym = symtab; si < num_syms; si++, psym++)

 {

Binutils 2.24 readelf

 for (ext = edyn, dynamic_nent = 0;

 (char *) ext < (char *) edyn + dynamic_size;

 ext++)

 {

 dynamic_nent++;

 if (BYTE_GET (ext->d_tag) == DT_NULL)

 break;

 }

 printf (_("\nDynamic section at offset 0x%lx contains %u entries:\n"),

 dynamic_addr, dynamic_nent);

 for (entry = dynamic_section;

 entry < dynamic_section + dynamic_nent;

 entry++)

 {

Binutils 2.24 readelf

 rel_size = section->sh_size;

 if (rel_size)

...

 printf (_(" at offset 0x%lx contains %lu entries:\n"),

 rel_offset, (unsigned long) (rel_size / section->sh_entsize));

 symsec = section_headers + section->sh_link;

 if (symsec->sh_type != SHT_SYMTAB

 && symsec->sh_type != SHT_DYNSYM)

Malelficus 1.0.0

 end_of_text = target_phdr->p_offset + target_phdr->p_filesz;

 /* last_chunk = input->size - end_of_text;*/

 error = malelf_binary_copy_data(output,

 input,

 end_of_text,

 input->size);

Symbol(s) Table(s)

Dynamic Information

Relocations

Misc

